
PURCHASED BY THE U.S. DEPARTMENT 
OF AGRICULTURE FOR OFFICAL USE 

Further Statistical Inference Methods for a 
Stochastic Model of Insect Phenology 

I3RIAN D EN N ISI AND WILLIAM P. KEMp2 

Enviro n. Entomo l. 17(5): 887-893 (1988) 
ABSTRAC]' In 1986, B. Dennis and coworkers formulated a model describin g the tem­
perature-dependent and stochastic character of insect development in field populations. This 
paper presents three additional statistical inference techniques to be used in conjunction with 
the model. We derive a confidence interval for p,(t), the proportion of the population in 
developm ent stage i at time t ; confidence intervals for the times at which interm ediate stage 
proportions peak; and a test for detecting outlying observations. Examples of each of these 
techniques are presented using data from the rangeland grasshopper, Ageneotettix deorum 
(Scudder). 
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RECENT PHENOLOGY MODELS incorporate temper­
a ture -dependent development and inher ent sto­
chastic variation (Osawa et al. 1983 , D ennis e t al. 
1986). The model presented by Dennis et a l. is 
useful for describing dev elopment in holometab­
olous and hemimetabolou s insects as sho wn by its 
applications to west ern spruce budworm (Kemp e t 
al. 1986) and rangeland grasshoppers (Kemp & 
Onsager 1986). This approach estimates th e pro­
portion of insects in a giv en development stage as 
a function of ac cumulated heat or degree-days 
(DD ). Researchers and pest managers ca n fit the 
model to a given data se t using a computer pr ogram 
listed in Dennis e t al. (1986). Stedinger e t a l. (1985) 
extended this mod eling app roach to in corporate 
spa tial variability. 

In this paper, we expla in three addition al statis­
tical inference procedures based on th e Dennis et 
al. (1986) phenology model: a confidence interval 
for p,(t) , the proportion of insects in stage i at time 
t; a confidence interval for the time, t,*, a t which 
p,(t) is maximum; and a test for the dev iation of 
an observa tion from its expected value under th e 
m odel for a single stage and time. Implementati on 
of th ese procedures requires a computer' Exam­
ples of each procedure are presented using data 
from the rangeland grasshopper Ageneotettix deo­
rum (Scudder). 

Methods 

Statistical Inferences in Phenology Modeling. 
Co nsider a series of sa m ples of size nl> n . , .. . , n q 

tak en from an insect population at successive times 
tl , t., ... , tq. If th er e a re r development stages , 
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then th e jth sample would consist of the counts XII ' 

X. j ' .. . , X' i ' where X'I is th e number of sampled 
insects in development stage i at time t l , and where 
~,X' j = n, . The counts XI I ' X2j ' ... , X'I can be de­
scribed as having a multinomial di stribution con­
ditional on th e sam pic size n r The und erl ying pro­
portion of the population in each development stage 
would be expected to change with time as the in­
dividual population member s dev elop. 

Let Y(t) be the stage of a randomly sampled 
member of th e population at time t; possible values 
for Y(t) ar e {l , 2, . . . , r} . The phenology models 
of Dennis et al. (1986) and Osawa e t al. (1983) 
assume that an insect's d evelopment is really a 
continuous stochastic process co nsisting of accu­
mulated sm all development incr ements. However, 
Y(t) is th e fundamental observed random variable 
because a sampled insect is recorded as having 
reached a di screte development stage. Wc define 
p,(t) = Pr[Y(t) = i] as the proportion of the pop­
ulation in development stage i at time t , i = 1, 
.. . , r. 

The model of Dennis et al. (198 6) takes th e pro­
portion p,(t ) to be 

{I + exp[ - (a l - t)/v;tn -', 

i = 1; 

(l + exp[-(a, - t) /v;t]l - I 

p,(t) = - {I + exp[- (a' _1 - t)/v;tn- ', (1) 

i = 2, .. . , r - 1; 
l,1 - {I + exp[ - (a'_1 - t) /VVtn ­

i = r. 

This expression ar ises from assuming that an in­
sect's underlying continuous dev elopment level, 
denoted by X(t ), has a log isti c prob ability distri­
bution w ith mean t and variance (=7r 2v t / 3 ) pro­
portional to t . Then Pr{Y(t) .:S i] = Pr{X (t) .:S a,l is 
the cum ula tive distribution functi on of a logistic 
distribu tion : 
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Fig. 1. Logistic cu mulative distribution function, 1/ II + exp[ - (a, - t )/y'Vtj) (y axis), plotted as a funct ion of 
t (D D: x axis), for va lue s of aI, a., a" as, and a, (and v ) listed in Table 1. The vertica l width of each region represents 
th e proport ion of inse cts in that stage at th at time (p ,(t)) . 

O, t = °(ao '= - 00); (2 ) 

. {l + exp[-(a, t)jW- ,vtH- l, 
Pr[Y(t) ::S 1] = i = 1, . .. , r - 1; 

{ 1, i = r (a, == + 00). . 

The proportion p,(t) is obtained from Equation 2 
as Pr[Y(t) ::S i] - Pr[Y(t) ::S i-I]. The quantity 
a" i = 1, . . . , r - 1 ca n be inte rpre ted as th e time 
t at whi ch half of the population is in stage i or 
bel ow: Pr[Y(a,) ::S i] = Pr[Y(a,) > i] = Jyiz (Fig. 1). 
The quantity v is a measure of the variability of 
development rates among insects in the population. 
In applicati ons , t is usually m easured in degree ­
days. 

If there are r develop ment stag es, then th e model 
has r unknown par ameters. The unknown param­
e te rs can be written as a column vector, 0: 

o= [ai ' az, ... , a,_ I, vj'. (3) 

Also, the proportions P.(t) defined in Equat ion 1 
can be written as p,(t; 0) to em phasize their de­
pendence on O. 

These parameters can be estimated from data 
using the max imum likelihood (ML) method . Non­
linear regression packages can be used to perform 
th e ML cal culations as explaine d by Dennis et al. 
(1986). The resulting vector of parameter esti­
mat es, den oted by 

o= [ai' a., ... , a,_I' v]', (4) 

has a large-sample mult ivar iat e normal dist ribu­
tion. Specifically, 

oi. multivariate normal(O, 'i:(0» , (5) 

in whi ch i. denotes conver gence in distribution as 
sample size becomes large, and 'i:(0) is an r x r 
variance-covarian ce matrix with ele me nts th at are 
fun cti ons of 0 (Bishop et al. 1975 ). The form of 
'i:(0), as well as how to construct th e ML estimate 
'i:(0) from nonlinear regression computer output , is 
described by Dennis et al. (1986) a nd in th e Ap­
pendix of this paper. 

Vari ous statistical inferen ces re garding fun cti ons 
of the parameters 0 of the phenology model (Equa­
tion 1) can be derived from Equation 5 with th e 0 
m ethod (Bishop e t al. 1975 ). The 0 method, as used 
in thi s paper, consists of the following large-sample 
result. Let g(O) be a real-valued fun ction th at is 
different iable with respect to each parameter in O. 
Then Equation 5 implies th at 

g(O) i. normal (g(O), (3(0)''i:(0){3(0», (6) 

wher e (3(0) is th e r x 1 vec tor of partial derivatives: 

{J(O) = [8g j8a l , •.. , 8g j8a' _I ' 8g j8vj'. (7) 

A large-sample, 100(1 - a)%, confidence int erval 
for g(O) is constructed from Eq ua tion 6 by sub sti­
tuting the ML estimate efor 0 in g (O), {J(O) , and 
'i:(0): 
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Fig. 2. Comparison of raw dat a (pl otted points) and model results (solid lin e) for the propo rtion (y axis) of the 
Ageneotettix deorum (Scudder) populat ion in each stage as a function of accumulat ed degree da ys (x axis); Roundup, 
Mont., 1975. 

(8) 

Here, z a / 2 is th e 100(1 - a /2) th percentile of the 
standard normal d istribu tion (e.g., Zo.= ~ 1.96). 
The sample sizes in field ph enology studies ar e 
typically very large (uppe r hundreds or more). The 
inf er ences obtained by means of the f> method ar e 
thus likely to be good a pp roxima tions, pro vid ed 
the phenology model co upled with the mult inomial 
sampling model ade quate ly de scrib es the system. 
For large study regi ons with spa tially heteroge­
neous development rat es, investigators should use 
the spatial extension s of Sted inge r e t a l. (1985). 

A Confidence Interval for Pi(t). The ML esti­
mate ]5,(t) of the proportion p,(t ) of th e population 
in stage i at time t is obta ine d by eva luating Equa­
tion 1 with the ML parameter estimates a" ... , 
a, -I' v: 

]5 ,(t ) = p,(t ; 0), i = 1, ... , r. (9) 

Thus, ]5 ,(t ) is a fu ncti on of th e ML par ameter es­
ti mates, and th e f> method ca n be used to find its 
large-sample distribution . Note, however, that if 
i = 2, . . . , r - 1, then ]5, (t) is a funct ion of just 
three of the parameter esti ma tes in 0, namel y a'_I ' 
a" and v. Also, note that ]5 ,(t ) a nd ]5 ,(t) are eac h 
fun ctions of just two unknown paramet er s. Define 

a column vector, 0" conta ining th e estima ted pa­
rameters in ]5, (t ): 

[a" v]' , i = 1; 
0. = 

{ 
[al-l , a" ti]', i = 2, . . . , r - 1; (10 ) 
[a,_" v ]', i = r . 

Because 8, is formed fr om a sub collecti on of ele­
ments from 8, it also has a la rge sample multivariate 
normal distribut ion . Speci fica lly, let 5(0,) be the 
3 x 3 (or 2 x 2) matrix formed b y deleting from 
~(o) all the rows and colum ns exc ept th ose corre­
sponding to the par ameter estimates in 0,. Then 

8, .'!, multivar iat e normalte, 5(0,)). (11) 

Because ]5,(t) '" g(O,), Equati ons 6, 7, and 8 pro­
vide the desired confide nce intc rva l for p,(t). The 
following partial derivatives a re required: 

- exp[ - (a,_, - t )/VVi'](VVi' )- ' 
. {I + exp[ - (a '_J - t )/ VVi'Jl-2, 

ap,;aa,_, = ex~(a,~','~ ' t );~\(VVi' ) - 1 
' {l + exp[(a' _l - t )/ VVi' )]- 2}, 

/ i = r. (12a) 

exp[- (a , - t )/ VVl](VVi' )- ' 
ap,/aa, =

{ 
:II + exp[ - (a , - t )/ VVln-z, 
t = 1, . .. , r - 1; (12b) 
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-exp[ -(a, - t) /yVt] 
' (a, - t)(2VyVt)-' 
· {I + exp[ -(a j - t)/yVtJ}-z, 
i = 1· 

-(a, - 't)exp[ -(a, - t) /yVt] 
.(2vyVt )-' 

'{1 + exp[-(a, - t)/yVtJ}-z 
ilp,/iJv = + (c.., - t)
 

-exp] -(a' _1 - t) /yVt](2vyVt)-'
 
-{I + exp[-(a'_1 - t) /yVtJ} -z,
 
i = 2, . .. , r - 1;
 

exp[-(a'_1	 - t)/yVt] 
· (a'_1 - t)(2vyVt )-1 
· {l + exp[ -(a'_1 - t)/yVtJ}-z, 
i = r. (12c) 

The partial derivatives are collected into the col­
umn vector (J(8,) as follows: 

[ilp,/aa l , ilp'/iJv]', i = 1; 

(J(8,) = [~,~a ' _ I' ilp ,/a~ ~,/iJv]', (13 ) 
t - 2, . . . , r 1,{ 

[ilp,jaa'_l ' ilp,jiJv]', i = r. 

From Equation 6, we have 

15,(t) .'!. normal (p,(t), (J(8, )'S(O,){J(O,)) . (14) 

The large-sample, 100(1 - a) %, confidence inter­
val for p,(t) follows from Equation 8: 

p,(t) ± Z ,, /Z Y(J(O,YS(iJ,){J(O,)' (15) 

A Confidence Interval for the Peak Time of 
p,(t). For development stages i = 2, . . . , r - 1, 
p.(t) considered as a function of time increases to 
a maximum value and th en declines (see Fig. 2). 
The "peak time" is that value of t, say t,*, which 
maximizes p,(t). The value is found by differen­
tiating p,(t) wth respect to t and equating to zero: 

dp,(t )/dtlt,* = o. (16) 

This equation for t,* is in the form h(t,*, a'_1> a" 
o) = 0, where 

h(t,*, a,_I, a" v) 
= -[(a,/t,*) + l]exp[ -(a, - t,*)/y'"i)t,"'] 

' {l + exp[ -(a, - t,*)/y'"i)t,"'J} -z 
+ [(a, _.lt,*) + l]exp[ -(a'_1 - t,*)/y'"i)t,"'] 
. {I + exp[ -(a'_ l - t,*)/y'"i)t,"'J} - z. (17) 

Equation 16 does not ha ve an algebraic solution 
for t,*. However, the implicit function theorem 
guarantees that t ,* is defined as a differentiable 
function , say g , of a'_1> a" and v (Rudin 1964, 195); 
that is, 

t,* = g(aj-J, a" v) = g(O,). (18) 

Thus, once the ML estimate t~* = g(O,) is obtained, 
the /j method will provide the large-sample distri­
bution for t,* and the large-sample confidence in­
terval for t ,*. 

Numerical algorithms such as the secant method, 
false position method, or Newton's method ca n be 

used to solve Equation 16 for the ML est imate of 
t ,*. The comp uta tions require a subroutine to eval­
uate h(t,*, a'- l' a" v) for the various values of t,*, 
an initial guess of the value of t~* (found by looking 
at a gr aph of p,(t )) , and the ML estima tes a'_I ' a" 
and 13 . Newton 's m ethod additionally would re­
quire evaluating the partial derivative of h(t,*, a,_I, 
a" v) with respect to t ,*. The derivative could be 
obtained analyti call y from Equation 17 or com­
puted numerically. The programming of these al­
gorithms is straightforward ; d et ails (and programs) 
are given by Pr ess et al. (1986). 

The partial derivatives of t,* = g(O, ) (Equation 
18) with respect to the parameters are needed to 
use the /j method (see Equation 6). These deriva­
tives are found using the chain rule for im plici t 
functions: 

ag jaa,_, = -(ah /aa, _.) / (ah /at ,*); 
ag /aa, = -(ah /aa,) /(ahjat ,*); 
ag/av = -(ah /iJv)/(ahjat,*) . (19) 

The vector (J(8,) becomes 

(J(O,) = [ag/aa'_ I' ag/aa" agjav]'. (20) 

The large-sample normal distribution of i,* is then 

t~* .'!. normal (t*, (J(O,yS(O,){J(O,)), (21) 

and the 100(1 - a) % confid ence int erval is 

t,* ± Z a/ Z Y(J(O,)'S(O,){J(O,)' (22) 

It is probably easiest to compute (J(9,) using nu­
merical derivatives for the expressions in Equation 
19, although an industrious inv estigator could in­
stead obtain the derivati ves anal yti call y from 
Equation 17. 

A Test for the Deviation from the Model of an 
Observation in a Single Cell. A test for significa nt 
deviation in a single ce ll is useful for detecting 
counts that are not described well by the phenology 
model. Although the model often gives an excellent 
descr iption of the overall pattern of development 
in a population, there are occasional outlier cell s. 

A generalized residual can be defined for the 
phenology model as 

W'i = (X'i - ni15,,) / yn/p,/, (23 ) 

where 

(24) 

is computed fr om Equation 9. Note that ~~ w/ is 
the Pe arson sta tistic for testing overall goodness of 
fit as described by Dennis et al. (1986). Using th e 
/j method and equation 6b3.2 in Rao (1973) , it can 
be shown that 

w" :!. normal (0, b,(O,)) (25) 

as the jth sample size n / becomes large, under th e 
null hypothesis that the model fits the i , jth cell. 
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Table I. Parameter estimates for Ageneotellix deorurn 
from Kemp & Onsager (1986) together with estimated 
variance-covariance matrix generated through procedures 
outlined in Appendix 

al a2 a3 a. as 

103.6 170.8 190.0 229.0 306.5 3.90 

at 50.03 8.92 1.82 - 18.21 1.09 -1.52 
a2 8.92 57.12 40.94 2592 0.70 -0.53 
a3 1.82 40.94 61.67 28.14 6.89 -0.,55 
a. - 18.21 2.5.92 28.14 47.77 21.77 -0.86 
as 1.09 0.70 6.89 21.77 71.32 0.06 
v -1.52 -0.53 -0..5.5 -0.86 0.06 0.58 

Here 

bpJ,) =	 1 - p,(t,) 
- [(n,jp,(t j)),8(0,)'5(O.l/1(0,)], (26) 

with /1(0,) and 5(0,) defined as in Equation 14. This 
variance b,(O,) is estimated using the ML parameter 
estimates: 

b/O,) =	 1 - p" - [(n,jp'j)/1(O,)'5(O,),8(O,)]. (27) 

The test statistic Z is computed as 

Z = w,,jyTi;[8J. (28) 

Under the null hypothesis that the model success­
fully describes x". 

Z .:!, normal(O, 1). (29) 

Reject the null hypothesis at level a if IZ I > zal2' 

or (more informative) compute a p value as the 
probability that a normal(O, 1) random variable 
would be more extreme than the observed value 
of Z. 

If multiple cells are tested at significance level 
a, then the experiment-wise Type I error is not 
controlled at level a. One solution to this problem 
is to test each cell at a more conservative level. A 
Bonferroni approach, for instance, would use a level 
of aim for each lest , where m is the number of 
tests being conducted. However, such tests would 
not be very powerful if many cells were being 

Table 3. Z-statistic values for testing mod el lack of fit to 
second-instar nymphs in Fig . 2 

Total	 No. 
Accumu­

grass- second No. second 
Julian lated DD 

hoppers	 instar instar Zdate (17.8'C, 
(all col- expectedbase) 

stages) leeted 

176 ,56 6 0 <10-5 0.51 
183 79 II 6 1.1,5 3.71" 
192 141 13 7 4.29 0.65 
199 186 21 4 1.27 1.61 
203 210 13 2 0.36 0.26 
210 277 1,5 0 <10-5 0.74 
217 314 17 0 <10-5 0.50 
224 363 32 0 <10-5 0.41 
233 39,5 15 0 <10-5 0.20 
2'39 423 28 0 <10-5 0.22 
246 451 II 0 <10 0.11-5 

2.53 493 9 0 <10 -5 0.Q7 
260 ,527 4 0 <10-5 0.03 

• Model does not lit this cell (P < 0.01) . 

screened. As an alternative, we suggest thai indi­
vidual cells be tested each at level a or be screened 
for low p values, but that such analysis be per­
formed only after a significant overall goodness­
of-fit lest (such as the lest based on the Pearson 
statistic) is obtained at level a . Evidence from both 
parametric (Carmer & Swanson 1973) and non­
parametric (Lin & Haseman 1978) multiple-com­
parison simulations suggests that multiple 1 degree­
of-freedom tests give reasonable experiment-wise 
Type 1 error control if protected by an omnibus 
test. 

We point out that the normal approximation 
(Equation 29) depends on the jth sample size, TI" 

being large. Also, the omnibus Pearson X2 test de­
pends on having adequate expected frequencies in 
most cells (the often-stated rule of thumb is no more 
than 20% of cells with expected frequency njp,(t) 
less than 5). Typical field data sets, however, are 
sparse; although the total number of insects caught 
is usually large, the bulk of the cells have zero 
counts and very small expected values under the 
model (Fig. 2). Even under such circumstances, 

Table 2. 95% confidence intervals for proportions, Pi(t), of grasshoppers in a particular stage, and for peak times, 
1;*., using par-ameter-s and variance-covariance matrix from Table 1 

Development 
stage DD (17.8OC, base) 

(peak time 
95% en 50 100 150 200 2.50 300 350 

Instar 1 0.98 ± 0.03 0.55 ± 0.18 0.13 ± 0.07 0.03 ± 0.02 om ± 0.01 0.00 0.00 
Instar 2 0.02 ± 0.02 0.43 ± 0.17 0.,57 ± 0.15 0.23 ± 0.10 0.06 ± 0.04 0.02 ± om 0.01 ± 0.01 

(132.7 ± 11.4) 

Instar 3 0.00 0.02 ± 0.02 0.14 ± 0.09 0.15 ± 0.10 0.05 ± 0.04 0.02 ± 0.01 om ± 0.01 
(176.5 ± 14.1) 

Instar 4 0.01 ± 0.01 0.12 ± 0.08 0.33 ± 0.13 0.21 ± 0.09 0.07 ± 0.04 0.02 ± 0.01 
(20,5.,5 ± 12.9) 

Instar 5 0.00 0.00 0.04 ± 0.03 0.24 ± 0.10 0.52 ± 0.11 0.44 ± 0.12 0.20 ± 0.08 
(263.4 ± 127) 

Adult 0.00 0.00 0.00 0.02 ± 0.02 0.14 ± 0.08 0.45 ± 0.12 0.76 ± 0.09 
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some studies have suggested that the x· approxi­
m ati on for the Pear son statistic can remain reason­
abl e (Larn tz 1978, Koehler & Larntz 1980 ). The 
situa tio n for the individual cell tests is more un­
clear. W e ca nno t at present offer any gu idel ines as 
to how large n J and P,(tJ) should be to insure the 
ad equacy of the normal approximation (Eq ua tion 
29) . Consequently, we stress that the main purpose 
of the ce ll-by -ce ll analysis should not be strict hy­
pothesis testing. Rather, the purpose should be to 
det ermine in a general way how many and which 
cell s ar e discrepant. 

Resuhs and Discussion 

Table 1 contains the phenology model parameter 
estimates computed by Kemp & Onsager (1986) 
for the rangeland grasshopper A. deorum. Also in 
Table 1 is the parameter variance-covariance ma­
trix that can be generated from the output of the 
SAS program in Dennis et al. (1986), using the 
method d escribed in the Appendix of this paper. 
Th e information in this table is needed for com ­
puting the confidenc e int ervals and tests d escribed 

,in th is pap er. 
The inf ormation can be used to estimate the 

proportion and associated confidence int erval of 
insec ts in a particular stage, given that t DD have 
accumulated. Table 2 gives the results of ca lcula t­
ing Equation 15 using the parameters and va ri­
ance-co variance matrix listed in Table 1, with 
IX = 0.05. Note th at the proportions giv en by Equa­
tion 1 always sum to unity at a given time t , as 
depict ed in Fig. 1. Slight deviations from this in 
Table 2 result from rounding. 

The times of th e peak occurrences of develop­
ment stage proportions may be of interest . Such 
peak times ca n be important for cond uc ting effi­
cient sampling or control strategies. For instance , 
it is suggested that density samples of rangeland 
grasshoppers be collected at the peak of the third 
instar to provide maximum m anagement flexibility 
(O nsage r 1987). The information in Table 1 and 
Eq ua tio n 22 ha ve been used to estima te the pe ak 
times of seco nd to fifth instars of A. deorum (Table 
2). The optimal d ensity sampling period (I.e .• the 
peak of third-instar pr oportions ) is estima ted at 
176 .5 ± 14.1 DD. If control were warranted , ap­
pli cat ion s should be made near the peak time of 
th e fourth instar for carbary l a nd the peak time of 
th e fifth instar for malathion (O nsage r 1987 ). We 
em phasize that th e peak times are those at wh ich 
prop ortions, not absolute densities. ar e maximum. 
The d at a represent sweep-net samples with va rying 
sam pling efforts and are therefore unsuitable for 
est imating absolute d ensities. 

The Pearson x· goodness-of-fit test is significa nt 
for the grasshopper data in Fig. 2, eve n though the 
model appears to des cribe th e data well graphi­
cally. In such cases, it is helpful to determine which 
cells (instar and date) were the outlie rs. The sta­
tisti cal test for an ill-fitted ce ll inc orporates th e 

information in Table 1 into the test statist ic (Eq ua­
tion 28). As an exam ple, Table 3 shows th e spe cific 
ce ll for second-insta r A. deorum (Fi g. 2) th at is not 
fit well by the model. 

In conclusion, three additional statistical infer­
en ce techniques have been developed to expa nd 
the ut ility of the Dennis e t a l. (1986) insect ph e­
nology mod el. These tech niques should assist in 
sampling and co ntro l of inse ct pests . 
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Appendix 

Th e following is a matrix procedure for obtain­
ing the estimated var iance-covariance ma trix from 
output of the SAS program, listed in Dennis et al. 
(1986), for computing par ameter estima tes in the 
insect phe nology model. 

Let 6be a column vec tor of the ML paramet er 
estima tes pr odu ced by the SAS pr ogr am : 

6 = [a" az, . . . , a'_ I' v]'. 
Next, let D be a d iagonal matrix (r x r) of the 

asymptotic standard deviations of the param eter 
estimates from th e outp ut of th e SAS program : 

Finally, let Rbe the par amet er cor rela tion ma­
trix from the output of. th e SAS program. 

T he estim ated varian ce- covariance ma trix L(6) 
used in Equation 8 and th roughout this paper may 
be found as follow s: 

L(6) = DRD. 
Th e estima ted vari an ce-covari an ce mat rix 5(6,) 
used in EquatioriJ f and th rough out th is pap er is 
obtained from L(6) by deleting all rows and col­
um.ns except those correspo nding to the parameters 
in 6, (see Equation 10). 

As described in Dennis et al. (1986), the ML 
par am eter estima tes and the associated standa rd 
deviat ions and corre lations can be computed with 
other nonlinear regression packages suc h as AR of 
BMDP. 



ERRATUM 

Equation 12a should read: 

_exp(-(a~-t»)({Vt)-l{l + e:rp(-(a~-t»)}-2 ..i = 2, . . .• r-l; 

= L%pc(a~-t))(.fVir'{l + ,..(-(a~-t))} _2,; = r. 
(12a) 






