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ABSTRACT

In 1986, B. Dennis and coworkers formulated a model deseribing the tem-

perature-dependent and stochastic character of insect development in field populations. This
paper presents three additional statistical inference techniques to be used in conjunction with
the model. We derive a confidence interval for p,(t), the proportion of the population in
development stage i at time ¢; confidence intervals for the times at which intermediate stage
proportions peak; and a test for detecting outlying observations. Examples of each of these
techniques are presented using data from the rangeland grasshopper, Ageneotettix deorum

(Scudder).
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RECENT PHENOLOGY MODELS incorporate temper-
ature-dependent development and inherent sto-
chastic variation (Osawa et al. 1983, Dennis et al.
1986). The model presented by Dennis et al. is
useful for describing development in holometab-
olous and hemimetabolous insects as shown by its
applications to western spruce budworm (Kemp et
al. 1986) and rangeland grasshoppers (Kemp &
Onsager 1986). This approach estimates the pro-
portion of insects in a given development stage as
a function of accumulated heat or degree-days
(DD). Researchers and pest managers can fit the
model toa given data set using a computer program
listed in Dennis et al. (1986). Stedinger et al. (1985)
extended this modeling approach to incorporate
spatial variability. s

In this paper, we explain three additional statis-
tical inference procedures based on the Dennis et
al. (1986) phenology model: a confidence interval
for p,(t), the proportion of insects in stage i at time
t; a confidence interval for the time, ¢*, at which
p,(t) is maximum; and a test for the deviation of
an observation from its expected value under the
model for a single stage and time. Implementation
of these procedures requires a computer.® Exam-
ples of each procedure are presented using data
from the rangeland grasshopper Ageneotettix deo-
rum (Scudder).

Methods

Statistical Inferences in Phenology Modeling.
Consider a series of samples of size n,, n,, ..., n,
taken from an insect population at successive times
ty, ts ..., t, If there are r development stages,

! College of Forestry, Wildlife and Range Sciences, University
of Idaho, Moscow, Idaho 83843,

* Rangeland Insect Laboratory, USDA-ARS, Bozeman, Mont
39717,

* Readers wishing to have a FORTRAN-77 source code are
invited to send a formatted IBM-PC disk to W.P.K.

then the jth sample would consist of the counts x,,,
Xy, ..., X; where x, is the number of sampled
insects in development stage i at time ¢, and where
2x; = n, The counts z,, x,, ..., x, can be de-
scribed as having a multinomial distribution con-
ditional on the sample size n,. The underlying pro-
portion of the population in each development stage
would be expected to change with time as the in-
dividual population members develop.

Let Y(t) be the stage ol a randomly sampled
member of the population at time ¢; possible values
for Y(t) are {1, 2, ..., r}. The phenology models
of Dennis et al. (1986) and Osawa et al. (1983)
assume that an insect’s development is really a
continuous stochastic process consisting of accu-
mulated small development increments. However,
Y(t) is the fundamental observed random variable
because a sampled insect is recorded as having
reached a discrete development stage. We define
p,(t) = Pr[Y(t) = i] as the proportion of the pop-
ulation in development stage i at time ¢, i = 1,
AT

The model of Dennis et al. (1986) takes the pro-
portion p,(t) to be

{1 + expl—(a, — t)/Vot]}~,
i=1;

{1 + exp[—(a, — )/Vot]}~

pi) = —{1 +exp[~(a_, — t)/Votli*, (1)
i=2...,r—1;
1 = {1 + exp[—(a,_, — t)/NVot]}",

This expression arises from assuming that an in-
sect’s underlying continuous development level,
denoted by X(t), has a logistic probability distri-
bution with mean ¢ and variance (==°vt/3) pro-
portional to t. Then Pr{Y(t) < i]= Pr{X(t) < a] is
the cumulative distribution function of a logistic
distribution:
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Fig. 1. Logistic cumulative distribution function, 1/{1 + exp[—(a, — ¢)/\/vt]} (y axis), plotted as a function of
t (DD: x axis), for values of a,, a,, a,, a,, and a, (and v) listed in Table 1. The vertical width of each region represents

the proportion of insects in that stage at that time (p,(t)).

0,i=0(a, = —o0); (2)
{1 + exp{—(a, — t)/Vot]}~,

Tl SR S
1,i=r(a, = +o00).

PrY(t) = i] =

The proportion p,(t) is obtained from Equation 2
as Pr[Y(t) < i] — Pr[Y(t) = i — 1] The quantity
a,i=1,...,r — 1 can be interpreted as the time
t at which half of the population is in stage i or
below: Pr[Y(a,) = i] = Pr[¥(a,) > i] = % (Fig. 1).
The quantity v is a measure of the variability of
development rates among insects in the population.
In applications, t is usually measured in degree-
days.

If there are r development stages, then the model
has r unknown parameters. The unknown param-
eters can be written as a column vector, 6

3)

Also, the proportions p,(t) defined in Equation 1
can be written as p,(¢; 0) to emphasize their de-
pendence on 6.

These parameters can be estimated from data
using the maximum likelihood (ML) method. Non-
linear regression packages can be used to perform
the ML calculations as explained by Dennis et al.
(1986). The resulting vector of parameter esti-
mates, denoted by

0=[a.8,...,6.79].

b=[4.4,....8,.,9, (4)

has a large-sample multivariate normal distribu-
tion. Specifically,

6 % multivariate normal(f, =(8)),

(5)

in which % denotes convergence in distribution as
sample size becomes large, and Z(0) is an r X r
variance-covariance matrix with elements that are
functions of 6 (Bishop et al. 1975). The form of
2(6), as well as how to construct the ML estimate
Z(0) from nonlinear regression computer output, is
described by Dennis et al. (1986) and in the Ap-
pendix of this paper.

Various statistical inferences regarding functions
of the parameters 6 of the phenology model (Equa-
tion 1) can be derived from Equation 5 with the &
method (Bishop et al. 1975). The é method, as used
in this paper, consists of the following large-sample
result. Let g(#) be a real-valued function that is
differentiable with respect to each parameter in 6.
Then Equation 5 implies that

g(0) % normal (g(0), B(0)'Z(0)8(8)),  (6)

where B(8) is the r x 1 vector of partial derivatives:
B(0) = [9g/da,, . .., 0g/da,.,, dg/ov]. (T)

A large-sample, 100(1 — «)%, confidence interval
for g(0) is constructed from Equation 6 by substi-
tuting the ML estimate 8 for 6 in g(6), 8(8), and
Z(0):
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Fig. 2.

Comparison of raw data (plotted points) and model results (solid line) for the proportion (y axis) of the

Ageneotettix deorum (Scudder) population in each stage as a function of accumulated degree days (x axis); Rmmdup,

Mont., 1975.

&)  z.,V(@y 2(0)8(6) @)

Here, z,, is the 100(1 — «/2)th percentile of the
standard normal distribution (e.g., Zoe = 1.96).
The sample sizes in field phenology studies are
typically very large (upper hundreds or more). The
inferences obtained by means of the § method are
thus likely to be good approximations, provided
the phenology model coupled with the multinomial
sampling model adequately describes the system.
For large study regions with spatially heteroge-
neous development rates, investigators should use
the spatial extensions of Stedinger et al. (1985).

A Confidence Interval for p,(t). The ML esti-
mate p(t) of the proportion p,(t) of the population
in stage i at time ¢ is obtained by evaluating Equa-
tion 1 with the ML parameter estimates d,, .. .,

&y, O
pt)=plt:0),i=1,... 1 (9)

Thus, $,(t) is a function of the ML parameter es-
timates, and the 8 method can be used to find its
large-sample distribution. Note, however, that if
i=2 ..., 7 — 1, then §(t) is a function of just
three of the parameter estimates in 8, namely d,_,,
d,, and ¢. Also, note that p,(t) and p,(t) are each
functions of just two unknown parameters. Define

a column vector, 8, containing the estimated pa-
rameters in p,(t):

. @, 9], i=1;
bi=1ld-i,do 0}, 5=2,...

-, o, i=r.

;=T (10)

Because 6, is formed from a subcollection of ele-
ments from 8, it also has a large sample multivariate
normal distribution. Specifically, let 5(8,) be the
3 x 3 (or 2 % 2) matrix formed by deleting from
Z(6) all the rows and columns except those corre-
sponding to the parameter estimates in 6, Then

(11)

Because p,(t) = g(6,), Equations 6, 7, and 8 pro-
vide the desired confidence interval for p,(t). The
following partial derivatives are required:

6, % multivariate normal(8,, S(6,)).

“EKP{ t)/\/_](\/_
1 +8Hp[ al :"'t,/\/_]]d.
= =m0 T =
0PS30 =L expila s~ e
{1 + expl(a,., — t)/Voi)I?},
{=r (12a)
BKP[ (e, = t)/NoL(Vot)!
ap,/oa, = {1 +exp[ (a.-‘ VAVETR et
-1 = (12b)
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'-eXP[—(a. — t)/\Vt]

(@, — t)(2vVot )
{l + exp[—(a, — t)/Vot]}2,
i=
—(a, — t)exp[ = 1)/\V/ot]
(20\/ot )
{1 + exp[—(a, — t)/\Vot]}*
aﬂ'r/av=4 +(a[—l_t}
-expl—(a,_, — t)/\/ot}(20\/vt)"!
{1 + exp[—(a,-, — t)/Vot]},
=2 it 1
exp[—(a,_, — t)/\/vt]
‘(ar—l - t)(zv\l/a)_l
{1 + exp[—(a,_, — t)/\Vot]},
i=r. (12¢)

The partial derivatives are collected into the col-
umn vector B(f,) as follows:

[0p,/da,, dp,/dv], i=1;
B(8,) = [apl/aal i» 9P, /aa“ 511 /ov], (13)
[ap,/aa'_; " '/ao] —_—
From Equation 6, we have
p(t) = normal (p(t), B(6,’S(©6)8(6)). (14)

The large-sample, 100(1 — «)%, confidence inter-
val for p,(t) follows from Equation 8:

BAE) £ 2,2V B@,YS @80 (5)

A Confidence Interval for the Peak Time of
p(t). For development stages i =2, ..., r — 1,
pi(t) considered as a function of time increases to
a maximum value and then declines (see Fig. 2).
The “peak time" is that value of t, say t,* which
maximizes p,(t). The value is found by differen-
tiating p,(¢) wth respect to ¢ and equating to zero:

dp,(t)/dt|t* =0 (16)

This equation for ¢* is in the form h(t*, a,_,, a,
v) = 0, where

h(t*, a,_,, a, v)
= _[{a(/ti*) + HexP["(an - tt‘)/vvtl ]
gl Moy exp{'_(al i tr‘)/\a"vtf |
+ [(ai—l/‘l*) + I}EXP[_(aa-x = ‘l*)/\l’otl ]
{1 + exp[—(a,, = t,*)/Vot*]} (17)

Equation 16 does not have an algebraic solution
for t* However, the implicit function theorem
guarantees that ¢* is defined as a differentiable
function, say g, of a,_,, a,, and v (Rudin 1964, 195);
that is,

t*=gla,._, a, v)=g0) (18)

Thus, once the ML estimate ¢* = g(f,) is obtained,
the & method will provide the large-sample distri-
bution for ¢* and the large-sample confidence in-
terval for t.*.

Numerical algorithms such as the secant method,
false position method, or Newton's method can be
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used to solve Equation 16 for the ML estimate of
t* The computatlons require a subroutine to eval-
uate h(t*, d,,, 4, ¥) for the various values of ¢*,
an initial guess of the value of £,* (found by lookmg
at a graph of §,()), and the ML estimates 4,_,, d,
and 6. Newton's method additionally would re-
quire evaluating the partial derivative of h(¢* d,_,,
d,, ¥) with respect to t,*. The derivative could be
obtained analytically from Equation 17 or com-
puted numerically. The programming of these al-
gorithms is straightforward; details (and programs)
are given by Press et al. (1986).

The partial derivatives of t* = g(6,) (Equation
18) with respect to the parameters are needed to
use the § method (see Equation 6). These deriva-
tives are found using the chain rule for implicit
functions:

dg/da,., = —(dh/da,_,)/(dh /0L *);
dg/da, = —(dh/da,)/(8h/at*);
dg/dv = —(0h/dv)/(dh /at*) (19)
The vector 8(8,) becomes
8(0) = [0g/da,,, dg/da, dg/dv]. (20)

The large-sample normal distribution of ¢* is then

£* % normal (t*, B(6)S(6)8(6)),  (21)
and the 100(1 — a)% confidence interval is
t‘n* i zc.-’z ﬁ(&()'sfai}ﬁ(é() {22)

It is probably easiest to compute B(f,) using nu-
merical derivatives for the expressions in Equation
19, although an industrious investigator could in-
stead obtain the derivatives analytically from
Equation 17..

A Test for the Deviation from the Model of an.
Observation in a Single Cell. A test for significant
deviation in a single cell is useful for detecting
counts that are not described well by the phenology
model. Although the model often gives an excellent
description of the overall pattern of development
in a population, there are occasional outlier cells.

A generalized residual can be defined for the
phenology model as

'ijlj e (xl_i = ﬂ;ﬁ:;)/ v n;ﬁqa (23)

where

Py = plt,) (24)
is computed from Equation 9. Note that 22 w2 is
the Pearson statistic for testing overall goodness of
fit as described by Dennis et al. (1986). Using the
& method and equation 6b3.2 in Rao (1973), it can
be shown that

i, * normal (0, b(6,) (25)

as the jth sample size n, becomes large, under the
null hypothesis that the model fits the i, jth cell.
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Table 1. Parameter estimates for Ageneotettix deorum
from Kemp & Onsager (1986) together with estimated
variance—covariance matrix generated through procedures
outlined in Appendix

ay dg g iy L »
103.6 170.8 190.0 229.0 306.5 3.80

ay 50.03 8.92 1.82 -1821 .09 -1.52
ap 8.92 57.12 4094 2592 070 -053
as 1.82 40.94 61.67 28.14 689 —0.55
ay —1821 2592 2814 47.77 2177 —0.86
as 1.09 0.70 6.89 2177 7132 0.06
¥ -152 -053 -055 —0.86 0.06 0.58
Here
b(8) =1 — p(t,)

= [(n,/p(,))8(8)'S(8,)8(8,)], (26)

with 8(6,) and S(f,) defined as in Equation 14. This
variance b,(6,) is estimated using the ML parameter
estimates:

b(8) =1 — p, — l(n,/p,)B6)S@)8B)) (27)
The test statistic Z is computed as
Z = w,/\/Bb). (28)

Under the null hypothesis that the model success-
fully describes x,,,

Z 2 normal(0, 1). (29)
Reject the null hypothesis at level a if |Z] > z,,,
or (more informative) compute a p value as the
probability that a normal(0, 1) random variable
would be more extreme than the observed value
of Z.

If multiple cells are tested at significance level
«, then the experiment-wise Type 1 error is not
controlled at level a. One solution to this problem
is to test each cell at a more conservative level. A
Bonferroni approach, for instance, would use a level
of a/m for each test, where m is the number of
tests being conducted. However, such tests would
not be very powerful if many cells were being
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Table 3. Z-statistic values for testing model lack of fit to
second-instar nymphs in Fig. 2

p— Total No.
Jubian lated DD hgrass- chond No. second
date  (17.6°C, Dhoppers instar instar A
Ksian) (all col- expected
stages) lected

176 56 6 0 <108 051
183 79 11 6 1.15 3.714
192 141 13 k] 4.29 0.65
199 186 21 4 1.27 1.61
203 210 13 2 0.36 0.26
210 277 15 0 <109 0.74
217 314 17 0 <105 0.50
224 363 32 0 <109 0.41
233 395 15 0 <105 0.20
239 423 28 0 <103 0.22
246 451 11 0 <10°% 0.11
253 493 9 0 <103 0.07
260 527 4 0 <103 0.03

2 Model does not it this cell (P < 0.01).

screened. As an alternative, we suggest that indi-
vidual cells be tested each at level a or be screened
for low p values, but that such analysis be per-
formed only after a significant overall goodness-
of-fit test (such as the test based on the Pearson
statistic) is obtained at level a. Evidence from both
parametric (Carmer & Swanson 1973) and non-
parametric (Lin & Haseman 1978) multiple-com-
parison simulations suggests that multiple 1 degree-
of-freedom tests give reasonable experiment-wise
Type 1 error control if protected by an omnibus
test.

We point out that the normal approximation
(Equation 29) depends on the jth sample size, n,,
being large. Also, the omnibus Pearson x* test de-
pends on having adequate expected frequencies in
most cells (the often-stated rule of thumb is no more
than 20% of cells with expected frequency np,(t,)
less than 5). Typical field data sets, however, are
sparse; although the total number of insects caught
is usually large, the bulk of the cells have zero
counts and very small expected values under the
model (Fig. 2). Even under such circumstances,

Table 2. 95% confidence intervals for proportions, p;(t), of grasshoppers in a parti stage, and for peak times,
1,;*, using parameters and variance-covariance matrix from Table 1
Development
stage DD (17.8°C, base)
(peak time 50 100 150 200 250 300 350
95% CI)
Instar 1 0.98 + 0.03 055 + 0.18 0.13 = 0.07 0.03 + 0.02 0.01 =+ 0.01 0.00 0.00
Instar 2 0.02 = 0.02 0.43 + 0.17 0.57 £ 0.15 0.23 + 0.10 0.06 £ 0.04 0.02 + 0.01 0.01 = 0.01
(1827 + 11.4)
Instar 3 0.00 0.02 + 0.02 0.14 + 0.09 015 + 0.10  0.05 = 0.04 0.02 = 0.01 0.01 + 0.01
(I7T6.5 £ 14.1)
Instar 4 001 + 0.01 012 + 0,08 033 £ 013 021 =009 0.07 + 0.04 0.02 + 0.01
(2055 + 12.9)
Instar 5 0.00 0.00 0.04 + 003 024 £ 010 052+ 011 0.44 + 0.12 0.20 + 0.08
(263.4 + 127)
Adult 0.00 0.00 0.00 0.02 + 0.02 0.14 £ 0.08 045 = 0.12 0.76 + 0.09
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some studies have suggested that the x* approxi-
mation for the Pearson statistic can remain reason-
able (Larntz 1978, Koehler & Larntz 1980). The
situation for the individual cell tests is more un-
clear. We cannot at present offer any guidelines as
to how large n, and p,(t,) should be to insure the
adequacy of the normal approximation (Equation
29). Consequently, we stress that the main purpose
of the cell-by-cell analysis should not be strict hy-
pothesis testing. Rather, the purpose should be to
determine in a general way how many and which
cells are discrepant.

Results and Discussion

Table 1 contains the phenology model parameter
estimates computed by Kemp & Onsager (1986)
for the rangeland grasshopper A. deorum. Also in
Table 1 is the parameter variance-covariance ma-
trix that can be generated from the output of the
SAS program in Dennis et al. (1986), using the
method described in the Appendix of this paper.
The information in this table is needed for com-
puting the confidence intervals and tests described
in this paper.

The information can be used to estimate the
proportion and associated confidence interval of
insects in a particular stage, given that t DD have
accumulated. Table 2 gives the results of calculat-
ing Equation 15 using the parameters and vari-
ance-covariance matrix listed in Table 1, with
a = 0.05. Note that the proportions given by Equa-
tion 1 always sum to unity at a given time t, as
depicted in Fig. 1. Slight deviations from this in
Table 2 result from rounding.

The times of the peak occurrences of develop-
ment stage proportions may be of interest. Such
peak times can be important for conducting effi-
cient sampling or control strategies. For instance,
it is suggested that density samples of rangeland
grasshoppers be collected at the peak of the third
instar to provide maximum management flexibility
(Onsager 1987). The information in Table 1 and
Equation 22 have been used to estimate the peak
times of second to fifth instars of A. deorum (Table
2). The optimal density sampling period (i.e., the
peak of third-instar proportions) is estimated at
176.5 = 14.1 DD. If control were warranted, ap-
plications should be made near the peak time of
the fourth instar for carbaryl and the peak time of
the fifth instar for malathion (Onsager 1987). We
emphasize that the peak times are those at which
proportions, not absolute densities, are maximum.
The data represent sweep-net samples with varying
sampling efforts and are therefore unsuitable for
estimating absolute densities.

The Pearson x* goodness-of-fit test is significant
for the grasshopper data in Fig. 2, even though the
model appears to describe the data well graphi-
cally. In such cases, it is helpful to determine which
cells (instar and date) were the outliers. The sta-
tistical test for an ill-fitted cell incorporates the
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information in Table 1 into the test statistic (Equa-
tion 28). As an example, Table 3 shows the specific
cell for second-instar A. deorum (Fig. 2) that is not
fit well by the model.

In conclusion, three additional statistical infer-
ence techniques have been developed to expand
the utility of the Dennis et al. (1986) insect phe-
nology model. These techniques should assist in
sampling and control of insect pests.
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Appendix

The following is a matrix procedure for obtain-
ing the estimated variance-covariance matrix from
output of the SAS program, listed in Dennis et al.
(1986), for computing parameter estimates in the
insect phenology model.

Let 6 be a column vector of the ML parameter
estimates produced by the SAS program:

6 =(d, d,, ...,d4,. . 0.

Next, let D be a diagonal matrix (r x 7) of the
asymptotic standard deviations of the parameter
estimates from the output of the SAS program:

Finally, let R be the parameter correlation ma-
trix from the output of the SAS program. A

The estimated variance-covariance matrix Z(8)
used in Equation 8 and throughout this paper may
be found as follows:

2(f) = DRD.

The estimated variance—covariance matrix S(8,)
used in Equation 15 and throughout this paper is
obtained from Z(6) by deleting all rows and col-
umns except those corresponding to the parameters
in 6, (see Equation 10),

As described in Dennis et al. (1986), the ML
parameter estimates and the associated standard
deviations and correlations can be computed with

other nonlinear regression packages such as AR of
BMDP.



Equation 12a should read:

ERRATUM

{"‘”(‘—r—(“""")w‘{l + en( 2=}
—-cxp(_(a:l_?:_t))(m)_l Lot crp(“(aﬁ—t))}'z i

(12a)








