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1. I N T R O D U C T I O N 

Perhaps the lognormal d i s t r i b u t i o n finds the widest variety of applications 
i n ecology. Ever since Mal thus and D a r w i n , biologists have been acutely 
aware t h a t populations of animals and plants grow mult ip l i cat ive ly . Study­
ing the consequences arising f r o m the enormous potent ia l for increase pos­
sessed by most species on earth forms a major component of modern eco­
logical research. Whenever quantities grow mult ip l i cat ive ly , the lognormal 
becomes a leading candidate for a statist ical model of such quantit ies . 

I n this chapter, we discuss some of the theoretical and descriptive m o d ­
eling studies i n ecology t h a t have featured the lognormal . We focus p r i ­
m a r i l y on the lognormal as a model of the abundances of species and not 
as a model of the size g rowth of ind iv idua l organisms. We review and c r i ­
t ique several of the more i m p o r t a n t ecological model ing approaches related 
to the lognormal ; i n some cases, we display new results or offer thoughts 
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on future stat ist ical and ecological research problems. The mater ia l i n th is 
paper is d iv ided into three sections, for wh i ch we here provide the fo l lowing 
summaries. 

I n Section 2, we reexamine the lognormal as a theoretical model of pop ­
u l a t i o n abundance. The t r a d i t i o n a l mul t ip l i ca t ive g r o w t h model is recast as 
a stochastic differential equation. Populat ion size then becomes a diffusion 
process, t h a t is, a M a r k o v process w i t h sample paths t h a t are continuous 
functions of t ime . The t rans i t i on d i s t r i b u t i o n of the process is lognormal ; 
various other statist ical properties such as time-dependent measures of cen­
t r a l tendency are obtained. The model is of l i m i t e d pract ical usefulness i n 
ecology, as i t is essentially j u s t a stochastic version of exponential g r o w t h . 
The model could only describe growth of a species for a short t i m e interva l , 
since a l l species eventually encounter environmental l im i t s to g r o w t h . 

However, we also describe a different stochastic g r o w t h model leading 
to the lognormal . The model is a stochastic differential equation based on 
the Gompertz g rowth equation. The model contains an under ly ing deter­
minist i c stable e q u i l i b r i u m for populat ion size, representing the outcome 
of g r o w t h regulated by l i m i t i n g environmental resources. The t r a n s i t i o n 
d i s t r i b u t i o n for populat ion size, as wel l as the e q u i l i b r i u m d i s t r i b u t i o n , is 
lognormal i n f o r m . Thus , ecologists can regard the lognormal not only as a 
model of unbounded exponential g r o w t h , b u t also as a model of populat ion 
regulat ion i n the presence of an environmental carry ing capacity. 

A n interpret ive prob lem arises when using stochastic differential equa­
t ions. A given stochastic differential equation represents two different di f ­
fusion processes, depending on whether I t o or Stratonovich stochastic i n ­
tegrals are used. A m a i n reason for using stochastic dif ferential equations 
is to approximate more complicated stochastic models. The details of the 
approx imat ion process determine which type of stochastic integral t o use. 
We show t h a t the stat ist ical properties of b o t h lognormal models under 
the Stratonovich interpretat ion are easily recovered f r o m those properties 
under the I t o in terpretat ion , and vice versa, using the concept of weighted 
d is tr ibut ions . 

We review i n Section 3 the role of the lognormal as a model of species 
frequencies. The lognormal is confined to representing a single species i n 
Section 2; by contrast, i n Section 3, the lognormal represents patterns dis­
played by ecological communities w i t h dozens, even hundreds, of species. 
Ecological and stat ist ical research on quant i tat ive species abundance p a t ­
terns began i n earnest w i t h the in t roduc t i on of the logseries model i n the 
early 1940s. Short ly afterward, the lognormal model was proposed i n reac­
t i o n t o the logseries, since many data sets d i d not appear J-shaped when 
p lo t ted on a logar i thmic scale. Numerous ecological studies have incorpo­
rated the lognormal model . Unfortunate ly , ecologists have not pa id enough 
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attent ion to sampling considerations and proper inference methods i n these 
studies. As a result , whether the logseries, the lognormal , or some other 
d i s t r i b u t i o n w i l l be more widely applicable i n species abundance studies 
is an open question. We t r y to clarify the problems of mak ing s t a t i s t i ­
cal inferences for species frequency models, and we describe one promis ing 
inference approach t h a t has been proposed b u t seldom used. 

One i n t r i g u i n g aspect of the lognormal species frequency d i s t r i b u t i o n 
is the so-called Canonical Hypothesis of species abundance. Th is h y p o t h ­
esis arose f r o m an empir ical pa t te rn t h a t had been noticed on logar i thmic 
species frequency plots. The plots indicated t h a t a randomly selected i n d i ­
v i d u a l organism i n the communi ty wou ld most l ikely come f r o m a species 
whose log-abundance was i n the same class as t h a t of the largest species. 
The hypothesis received considerable at tent ion i n the ecological l i t e ra ture , 
and a "canonical" lognormal d i s t r i b u t i o n was proposed having parameters 
constrained i n such a fashion as to fix this abundance re lat ionship. We 
review this hypothesis i n Section 3, and we raise a caut ionary note t o the 
effect t h a t the Canonical Hypothesis has seldom been formal ly tested i n 
any way k n o w n to be stat ist ical ly va l id . The hypothesis has been s t u d ­
ied more recently i n the statistics l i terature , though . The results, wh i ch 
we summarize i n Section 3, suggest t h a t a new level of stat ist ical aware­
ness should be injected into the empir ica l studies of species frequency p a t ­
terns. 

Possibly the m a i n role of the lognormal i n ecology is s imply t o serve as 
the handiest adjustable wrench i n the toolbox of stat ist ical d i s t r ibut ions . 
Ecological abundance data are intr ins ical ly positive, w i t h a few enormously 
h igh data points typ ica l ly arising i n every study. The lognormal d i s t r i b u t i o n 
is an ideal descriptor of such data , w i t h a positive range, r i g h t skewness, 
heavy r i ght t a i l , and easily computed parameter estimates. 

Ecological data sets, however, sometimes contain complicat ing factors 
which rule out the use of a simple two-parameter lognormal . I n Section 4 
we review three typ ica l modifications of the lognormal . F i r s t , ecological 
data sets often consist of count data . The Poisson-lognormal d i s t r i b u t i o n 
represents a discrete version of the lognormal potent ia l ly applicable t o such 
cases. Second, ecological abundance surveys often contain an overly large 
number of samples w i t h abundances of zero. The delta- lognormal , formed 
as a f inite m i x t u r e of an ord inary lognormal d i s t r i b u t i o n and a degenerate 
(spike) d i s t r i b u t i o n at zero, offers advantages when est imating mean abun­
dance is the objective of the surveys. T h i r d , ecological abundances observed 
i n samples sometimes grew f r o m random numbers of i n i t i a l propagules i n 
each sample. We review a compound d i s t r i b u t i o n s tructure recently p r o ­
posed for such data; the structure also provides a degenerate component 
for added zeros. 
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We adopt the fol lowing notat ion throughout the paper. I f X = log N 
has a n o r m a l d i s t r i b u t i o n w i t h probabi l i ty density funct ion (pdf) given by 

(1.1) 

where - o o < i < + 0 0 , t h a t is, i f 

X ~ normal(;u,o-^) (1.2) 

then N = has a lognormal d i s t r i b u t i o n w i t h p d f 

[\ogn- fif 

(2a2) 
(1.3) 

and we w r i t e 

X ~ lognormal(/ i ,(7^) (1.4) 

For addi t ional in format ion on discrete and continuous stat ist ical dis­
t r i b u t i o n s , inc luding those appearing i n this paper, we refer the reader to 
P a t i l et a l . (1984a, 1984b, 1984c). 

2. P O P U L A T I O N G R O W T H M O D E L S 

2.1 M u l t i p l i c a t i v e Populat ion G r o w t h 

M a c A r t h u r (1960) quantif ied for ecologists the not ion t h a t the abundance 
of a single species should have, under certain circumstances, a lognormal 
d i s t r i b u t i o n . His reasoning was more in tu i t ive t h a n mathemat ica l , b u t was 
nonetheless adopted by ecologists as a pr inc ipa l explanation of observed 
lognormal abundance patterns (May, 1975). M a c A r t h u r assumed t h a t the 
g r o w t h rate of a species could be represented by an ordinary differential 
equation (ODE) of the f o r m 

! ^ - « W < ) ' (2.1) 

where n{t) is populat ion abundance (typical ly measured i n numbers of i n ­
dividuals or biomass per u n i t area or volume) at t ime t , and r ( t ) is the per 
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i n d i v i d u a l (or per u n i t biomass) g rowth rate . This O D E integrates t o 

1 

log n(t) = log no + I r{T) dr (2.2) 
0 

where rig = n (0 ) . M a c A r t h u r noted t h a t the funct ion r{t) m ight vary 
randomly i n t ime for some species due to fluctuations of environmental 
factors. The integral i n (2.2) could then be regarded as the accumulated 
sum of random variables. M a c A r t h u r invoked the Central L i m i t Theorem 
to predict t h a t l o g n ( t ) would have a normal d i s t r i b u t i o n . 

T w o features of M a c A r t h u r ' s in tu i t i ve derivat ion are noteworthy : (a) 
the idea of random fluctuations in the per ind iv idua l g r o w t h rate , and (b) 
the time-dependence of the normal d i s t r i b u t i o n for l o g n ( t ) . The fluctua­
tions, for the derivat ion to ho ld , must be of such a nature t h a t the sum of 
random variables given by X j -|- X j + \- ^k' where 

»> 

X,= I r{r}dT (2.3) 
o<-i 

and 0 = CQ < ai < < ... < = t, conforms to one of the various Cen­
t r a l L i m i t Theorem schemes. The result ing n o r m a l d i s t r i b u t i o n for log n{t) 
would have a mean t h a t essentially grows l inearly w i t h t and a variance 
t h a t grows propor t i ona l t o t. Thus , two ecological conditions under ly ing 
this derivation become apparent: (a) Any autocovariance of the fluctua­
tions must decay rap id ly for the Central L i m i t Theorem to ho ld , (b) The 
t ime t must be relatively early in the population 's g rowth trajectory , before 
state-dependent changes i n r , due to crowding or food l i m i t a t i o n , become 
i m p o r t a n t . M a c A r t h u r pointed out t h a t the model wou ld only apply t o 
opportunist ic species, or species colonizing unut i l i zed resources. 

2.2 Stochastic Dif ferential Equations 

I t is useful t o derive various statist ical properties for stochastic models such 
as M a c A r t h u r ' s , i n order t o test t h e m w i t h ecological data. The analysis is 
greatly s impli f ied by using stochastic differential equations (SDEs). SDEs, 
known also as diffusion processes, can serve as approximations t o many 
stochastic processes, inc luding stochastic difference equations, branching 
processes, and b i r t h - d e a t h processes (see K a r l i n and Taylor , 1981, p. 168). 
The approach to SDEs and lognormal growth models taken here follows 
t h a t of Dennis and P a t i l (1984). See also P a t i l (1984). 
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A n SDE model for the growth of a single species may be w r i t t e n as 

dN{t) = N(t)g{N{t)) dt + (7N{t) dW{t) (2.4) 

Here N(t) is populat ion abundance (now in upper case to denote a stochas­
tic process) at t ime t, and g{N{t)) is the per u n i t abundance g r o w t h rate , 
which i n general may depend on the populat ion abundance. Also, W{t) is a 
s tandard Wiener process {W[t) ~ n o r m a l ( 0 , t ) ; dW{t) ~ normal (0 ,d t ) ) and 
cr is a positive scale constant. The f o r m of (2.4) arises f r o m an assumption 
t h a t the per u n i t abundance g rowth rate , g{N[t)), is per turbed by unpre­
dictable environmental factors. Mathemat ica l ly , the differential dN{t) is 
defined i n terms of an I t o or a Stratonovich stochastic integral (e.g., K a r l i n 
and Taylor , 1981, p. 346). The quant i ty N{t) becomes a diffusion process, 
a type of M a r k o v process having continuous sample paths w i t h p robab i l i t y 
one. T w o functions, the inf initesimal mean and the inf ini tes imal variance, 
characterize most of the statist ical properties of a diffusion process. They 
are defined respectively by 

m j v ( n ) = Virn ^E{AN \ = n] (2.5) 

v^{n) = l i m ^ E [ ( A X ) ^ | N{t) = n\) 

where A X = X ( t - f h) — X ( t ) . A s tandard result is t h a t the inf ini tes imal 
mean and variance of the process X ( t ) defined by the SDE (2.4) are 

m j v ( n ) = n p ( u ) - I - w n (2.7) 

Ujv(n) = a^n^ (2.8) 

Here w is an indicator variable which depends on the type of stochastic 
integral being used to define the SDE (2.4): w = 0 i f the I t o integral is 
used, and w = ff'^/2 i f the Stratonovich integral is used. 

Whether the I t o or Stratonovich integral is appropriate depends on the 
interpretat ion of (2.4) as an approx imat ion to some under ly ing stochastic 
process. I f (2.4) is seen as an approx imat ion to a stochastic difference 
equation w i t h uncorrelated noise, then the I t o in terpre tat i on should be 
used. I f , however, X ( t ) is viewed as an approx imat ion to some process 
produced by integrat ing along a sample p a t h of a smooth Gaussian process, 
then the Stratonovich interpretat ion of (2.4) should apply. These points 
are developed further by Ricc iardi (1977), K a r l i n and Taylor (1981), and 
Horsthemke and Lefever (1984). 

The fact t h a t the I t o and Stratonovich interpretations of (2.4) p ro ­
duce different quant i tat ive predictions has caused some consternation i n 
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the ecological l i terature (Feldman and Roughgarden, 1975; T u r e l l i , 1977). 
The controversy has diminished i n more recent years, as ecological m o d ­
elers now do not take SDEs of f o r m (2.4) too l i teral ly , b u t merely regard 
the SDEs cis mathemat ica l ly convenient approximations t o more detai led, 
under ly ing processes. We show below t h a t two SDE models producing log-
n o r m a l d is tr ibut ions have qual i tat ive ly s imi lar predictions under the I t o 
and Stratonovich interpretat ions , and t h a t any differences are easily sorted 
out using weighted d is tr ibut ions . 

One of the most useful features of diffusion processes is the transfor­
m a t i o n property . I f N{t) is a diffusion process, then X[t) = h[N{t)) is 
also a diffusion process, provided / i is a continuous, s t r i c t ly increasing (de­
creasing) funct ion . The inf inites imal mean and variance of X{t) are given 

by 

m ^ ( x ) ^ " ^ ^ " f ' ^ " ) + m ^ ( n ) h - ( n ) , (2.9) 

vAx)=vMh'{n)r (2.10) 

(if h' and h" are un i f o rmly continuous functions) w i t h n = h~^[x) ( K a r l i n 
and Taylor , 1981, p . 173). Th is property often permits the t rans format ion 
of a novel diffusion process into a known process w i t h wel l -studied stat ist ical 
properties. 

2.3 Stochastic Exponent ia l G r o w t h Mode l 

M a c A r t h u r ' s i n t u i t i v e model can be recast i n stat ist ical terms as an SDE 
of the f o r m (2.4) w i t h a constant per u n i t abundance g r o w t h rate : 

dN{t) = rN{t) dt + aN{t) dW{t) (2.11) 

The Stratonovich version of this model was extensively analyzed by Capo­
celli and Ricc iardi (1974) (see also Tuckwel l , 1974). A discrete t ime stochas­
t ic version of the exponential g r o w t h model was studied by Lewont in and 
Cohen (1969), and is essentially recaptured i n the I t o version of (2.11). 
The differences i n the I t o and Stratonovich versions were studied by Gray 
and Caughey (1965), Feldman and Roughgarden (1975), R icc iard i (1977), 
and B r a u m a n n (1983). The m a i n properties of the model are found us­
ing the t rans format ion X{t) = l o g X ( t ) and the formulas (2.9) and (2.10), 
producing 

2 
m^ix) = r + io - ~ (2.12) 

vx{x) = a (2.13) 
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These are the inf ini tes imal moments of a Wiener process w i t h d r i f t . A 
wel l -known result (e.g. Ricc iardi , 1977, p. 58) gives a n o r m a l t rans i t i on 
d i s t r i b u t i o n for X[t): 

X{t) ~ normal ^Xg + + w - y ^ t, a^?j (2.14) 

Equivalently, the d i s t r i b u t i o n of N{t) becomes lognormal : 

N{t) ~ lognormal ^log ng + + w - y ^ t, a'^t^ (2.15) 

I t is interesting to compare various measures of central tendency w i t h 
the determinist ic solution of the O D E dn{t)/dt = rn{t) given by 

n{t) = rige'-' (2.16) 

The mean, geometric mean, a n d harmonic mean of N{t) are, respectively, 

E\N{t)] = noe("+"^' (2.17) 

e x p { E [ l o g X ( t ) l } = ngel^+"-('^'/2)lt (2.I8) 

1/E[l/N{t)] = noe("+" - '^ ' ' * (2.19) 

The expectations are conditioned on X ( 0 ) = r ig . Also, the median and 
mode of the d i s t r i b u t i o n of N{t) are found to be 

m e d i a n ( X ( t ) ) = ngel"+"-( ' ' ' /2))t ^2.20) 

m o d e ( X ( t ) ) - ngc! '-+"-(3'^'/2)l* (2.21) 

For smaller values of r , some of the central tendency measures increase 
exponential ly whi le others decay to zero. I n fact, i f r < [o^/2) — w, the 
probab i l i ty t h a t N{t) is a r b i t r a r i l y close t o zero approaches 1 as t becomes 
large: 

P [ 0 < X ( « ) < e] = P [ - o o < X ( t ) < logs] 

_ r X{t) - E[X{t)] \oge - E[X{t)]] 
-P[-°^< [ var (X(0 ) l V 2 ^ [ v a r ( X ( t ) ) ] V 2 ) - l (2.22) 

as t —> 0 0 , since the last expression is the probab i l i ty t h a t a s tandard 
n o r m a l r a n d o m variable is less t h a n or equal to [log sr — Zg] / (a\/t ) — [r + w — 
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(CT^/2)]\/t/(7, which increases w i t h o u t l i m i t as t increases. A s imilar result 
was described by Lewont in and Cohen (1969) for a discrete t i m e process, 
and by Capocelli and Ricc iardi (1974) for the Stratonovich version of th is 
model . 

Note t h a t i n the above central tendency measures, the geometric mean 
equals the median, wh i ch is a general property of the lognormal d i s t r i b u t i o n . 
Also, the determinist ic tra jectory (2.16) equals the ar i thmet ic mean for the 
I t o version, whi le for the Stratonovich version the deterministic tra jectory 
equals the geometric mean. This point was stressed by B r a u m a n n (1983) 
in Eisserting t h a t a m a i n pract ical difference in the I t o and Stratonovich 
versions is the semantic interpretat ion of (2.16) as a mean. I n fact , a 
cascade of interrelationships between the central tendency measures of the 
two versions exists (Dennis and P a t i l , 1984). Let Nj{t) and Ng{t) denote, 
respectively, the I t o and Stratonovich versions of N{t). T h e n , 

E[Nj{t)] - e x p { h ; [ l o g X 5 ( t ) ] } = n{t) (2.23) 

exp{E[\ogNi[t)]} =1/E[l/Nsit)] (2.24) 

l/E[l/Njit)]=mode{Ns{t)) (2.25) 

More generally, the generalized means of the I t o and Stratonovich ver­
sions are related. The ^ t h moment about the or ig in of N{t) is 

E[{N{t)y] = (2.26) 

The generalized mean of N{t) is then: 

{E{{N[t)y]y^' = ^ ^ e k + " + ( « - i ) ( < ^ V 2 ) l t (2.27) 

The I to -Stratonovich interrelat ionship becomes 

{E[{Njmy^' ^ {E\{Ns{t)y-']y^^'-'^ (2.28) 

These interrelationships are derived f r o m a general property of the ex­
ponential g r o w t h SDE: the Stratonovich t rans i t i on lognormal d i s t r i b u t i o n 
is a weighted I t o t rans i t i on lognormal d i s t r i b u t i o n . The stat ist ical concept 
of weighted d is tr ibut ions was defined by Rao (1965) and has been invest i ­
gated by P a t i l and O r d (1976), P a t i l and Rao (1977, 1978) and M a h f o u d 
and P a t i l (1982). As pointed out by Dennis and P a t i l (1984), the I t o and 
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Stratonovich lognormal t rans i t i on pdfs are related by 

f (r, t \ r , \^ I ,0 
fs{n,t\n,)= E[[NMY"\ ^ ^ 

We w i l l fur ther po int out here t h a t the Stratonovich p d f can be obtained i n 
this model as a scale-transformed I t o pdf. I t is a property of the lognormal 
d i s t r i b u t i o n t h a t 

^ = . - * / ( e - « „ ) (2.30) 

where / ( n ) is the pd f of a lognormal [fi, A) random variable, X . Thus , 
l e t t ing P = 1/2, the Stratonovich p d f can be obtained f r o m the I t o p d f 
t h r o u g h the scale transformat ion Ns[t) — exp(<T^t /2)Xj ( t ) . 

2.4 Stochastic Gompertz G r o w t h Mode l 

The stochastic g rowth model given by the SDE (2.11) could not be used 
indefinitely to represent a population 's abundance. A n increasing popula­
t i o n wou ld eventually encounter l imi ts on nutr i ent supply, space, or other 
resources necessary for g rowth . This s i tuat ion is frequently modeled i n 
ecology w i t h an O D E of the f o r m 

dn{t) 
dt 

= n{t)g[n{t)) (2.31) 

(e.g. Freedman, 1980), where g{n[t)) is assumed to be a decreasing funct ion 
of n(<) w i t h the fol lowing properties: 

g[h) = 0 

for some n such t h a t 0 < re < oo, and 

g'[n) < 0 

(2.32) 

(2.33) 

Populat ion abundance for such models increases (or decreases) f r o m reg to 
the stable equ i l i b r ium value given by re. 

One part icular f o r m of (2.31) is the Gompertz g r o w t h model : 

^ = a r e ( t ) l o g 
[n[t)\ 

(2.34) 
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This O D E integrates readily t o 

n{t) = exp log n+ log (2.35) 

This g r o w t h trajectory is a sigmoid curve w i t h an inflection po int at n/e. 
Such models can often be approximated quite wel l by the logistic 

g rowth model . The procedure approximates g{n) w i t h a linear funct ion 
using a Taylor series expansion around n (Dennis and P a t i l , 1984): 

(2.36) 

Here r = -ng'{n). For the Gompertz model , the logistic approx imat ion has 
r = a. This approx imat ion has a trajectory t h a t starts at HQ, and levels off 
at n (like the Gompertz ) , b u t the inflection po int occurs at re/2. 

Stochastic versions of such models can be b u i l t as SDEs of the f o r m 
(2.4). I n the result ing stochastic models, populat ion abundance does not 
level off at a stable equ i l i b r ium. Rather , the d i s t r i b u t i o n for N{t) may 
approach a l i m i t i n g stat ionary d i s t r i b u t i o n t h a t is independent of the i n i t i a l 
conditions as wel l as t. The stat ionary d i s t r i b u t i o n , when i t exists, has the 
fol lowing p d f (see Dennis and P a t i l , 1984): 

/ ( r e ) = ^ e x p { ^ I £ M r f „ _ 2 ( l - ^ ) l o g r e | (2.37) 

The constant is evaluated by sett ing the area under /(re) equal t o one. 
Th is stat ionary p d f is a member of the log-exponential f ami ly of pdfs 

defined by P a t i l and O r d (1976). A feature of this fami ly is the " f o r m -
invariance" property : the size-biased version always retains the same f o r m 
as the or ig inal pdf . P a t i l and Rao (1978) provide a general discussion of 
the properties of size-biased d is tr ibut ions . 

One impl i ca t i on of this property is t h a t the I t o and Stratonovich ver­
sions of the SDE (2.4) have stat ionary distr ibut ions of the same f o r m (Den­
nis and P a t i l , 1984). F r o m (2.37), the Stratonovich stat ionary p d f is f ound 
to be a size-biased I t o stat ionary pdf: 

fsin) - ^ ( . 3 3 , 

Thus , i f the I t o version of (2.4) predicted a certain type of s tat ionary dis­
t r i b u t i o n , such as a lognormal or a gamma, then the Stratonovich version 
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wou ld predict the same type (provided b o t h pdfs exist ) . A n immediate 
consequence of th is relationship (2.38) is t h a t the harmonic mean of the 
stat ionary Stratonovich pd f is the mean of the stat ionary I t o pdf : 

1/E[l/Ns] = E[Nj] (2.39) 

T h e stochastic version of the Gompertz model is i n the f o r m (2.4), 
w i t h g{N{t)) = alog[n/N{t)]. The stat ionary p d f is f ound f r o m (2.37) to 
be t h a t of a lognormal random variable: 

X ( o o ) ~ lognormal f l o g n - K ^ V ^ ) - ^ ^ ^ \) 
\ 2 a / 

This result considerably extends the conceptual use of the lognor­
m a l i n ecology as a populat ion g rowth model . The lognormal under the 
M a c A r t h u r - t y p e scenarios was s t r i c t l y a t ime-dependent, transient model 
for a popula t ion i n the early phase of its g rowth . By contrast , the lognormal 
(2.40) is a model for a populat ion fluctuating around a stable e q u i l i b r i u m 
value. 

A stochastic version of the logistic model (2.36) takes the f o r m (2.4), 
w i t h g{N{t)) = r — {r/n)N{t). The stat ionary d i s t r i b u t i o n is a gamma 
d i s t r i b u t i o n w i t h the fol lowing pdf : 

fin) - ^f^-'^-"" (2-41) 

where a = 2rl{a'^n) and /? ^ 2rla'^ - l + 2uj/a'^. I f /? > 1, the gamma 
has roughly the same shape as the lognormal : un imoda l and right-skewed. 
I n many pract ical instances, ecologists wou ld not be able to d ist inguish 
between the lognormal and the gamma on the basis of f i t t o a given data 
set. Just as the logistic (2.36) is an approx imat ion t o g r o w t h models w i t h 
a stable e q u i l i b r i u m , the gamma can serve as an approx imat ion to the sta­
t i onary d is tr ibut ions of stochastic g rowth models of the f o r m (2.4). Dennis 
and P a t i l (1984) provide further discussion of the ecological role of the 
gamma as an abundance model . 

The stochastic Gompertz model has the convenient feature t h a t the 
complete t rans i t i on pd f can be obtained (Ricc iardi , 1977). The transfor­
m a t i o n X{t) = l o g X ( t ) yields, w i t h the help of formulas (2.9) and (2.10), 
a diffusion process w i t h inf inites imal moments given by 

2 

mx{x) = alogn——-|-w — ax (x) = CT^ (2-42) 
2 
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These are the inf inites imal moments of the wel l -known Ornstein-Uhlenbeck 
process (e.g. K a r l i n and Taylor , 1981, p . 170). T h e t rans i t i on d i s t r i b u t i o n 
for X(t) is n o r m a l : 

X[t) ~ n o r m a l ( / i ( t ) , \ { t ) ) (2.43) 

where 

M ( t ) = l o g r e - ^ — 
o 

+ I log n o - l o g re+^^^^^^ I e-"* (2.44) 

A(t) = ^ ( l - e - ^ " * ) (2.45) 

T h u s , the t rans i t i on d i s t r i b u t i o n of N{t) is lognormal : 

N[t) ~ lognormal( /x(t ) , A(t)) (2.46) 

We have here a time-dependent lognormal d i s t r i b u t i o n t h a t could represent 
a populat ion 's abundance for large values of t as wel l as smal l values. The 
l i m i t i n g s tat ionary d i s t r i b u t i o n (2.40) is recovered f r o m (2.46) as t —> oo. 

Various time-dependent measures of central tendency can be w r i t t e n 
down: 

{E[[N(t)y]y^^ ^ gM(t)+9A(t)/2 (2.47) 

m o d e ( X ( t ) ) = e''^*)-^^*) (2.48) 

The ar i thmet i c mean, geometric mean ( = median) , and harmonic mean are 
found f r o m (2.47) by sett ing 6 = 1,0, and — 1 , respectively. I n par t i cu lar , 
the geometric mean of N[t) for the Stratonovich version of the Gompertz 
SDE equals the deterministic g rowth trajectory given by (2.35). 

The relationship between the I t o and Stratonovich versions of the 
stochastic Gompertz model is manifested i n terms of a weighted d i s t r i ­
b u t i o n , as was the case for the stochastic exponential g r o w t h model . A 
property of the lognormal d i s t r i b u t i o n relates the lognormal r a n d o m v a r i ­
able N w i t h its /9-weighted version X ^ . Specifically, i f 

X ~ lognormal ( / i . A) (2.49) 
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w i t h p d f f{n), and i f Np has a pd f given by 

then 

Np ~ lognormal(f4 + ^A, A) (2.51) 

Th is /^-weighted lognormal is also the d i s t r i b u t i o n of a scale transforma­
t i o n of the or ig inal random variable given by exp(/?A)X (see (2.30)). The 
property (2.51) is related to the variance-invariance characterization the­
orem of the lognormal due to Mahfoud and P a t i l (1982): N is lognormal 
iff V a r ( l o g X ) = V a r ( l o g X ^ ) for al l /? > 0. F r o m (2.44), we find t h a t the 
means of the log-transformed I t o and Stratonovich variables are related by 

2 

M s ( < ) = M / ( t ) + ^ ( l - e " * ) (2.52) 

where /X|(t) = E[\ogNj{t)], etc. Thus , the Stratonovich and I t o lognormal 
d istr ibut ions share precisely the weighted relationship (2.50), where /? is a 
funct ion of t ime . Specifically, 

, , , , . re^W/,(n,t|no) 
fs{n,t\n,)= Em{t))m] (2-5^) 

where 

/?(<) = 1 ^ ( 1 - e - " ' ) / A ( t ) (2.54) 

As t becomes large, the relationship (2.53) of the t rans i t i on pdfs approaches 
the stat ionary size-biased relationship (2.38), since /?(<) —» 1. 

3. SPECIES F R E Q U E N C Y M O D E L S 

3.1 Fisher's Logseries Models 

A p i v o t a l , three-part paper by Fisher, Corbet , and Wi l l i ams (1943) 
launched four decades of ecological research on quant i tat ive patterns of 
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species abundance. Though i t was not used by Fisher et a l . , the lognor­
m a l d i s t r i b u t i o n has been one of the m a i n tools used by ecologists i n this 
research. 

C. B . Wi l l i ams had been studying samples of moths f r o m Great B r i t a i n , 
and A . S. Corbet had been s tudying but ter f ly samples f r o m Malaya . M a n y 
species were represented i n the samples. Corbet and Wi l l i ams noted t h a t 
any part i cu lar sample usually had a large number of species represented 
by only a single ind iv idua l apiece, whi le a less number of species were 
represented by two indiv iduals , even less by three indiv iduals , and so on. 
Corbet had observed t h a t these species frequencies appeared to follow a 
harmonic series p a t t e r n : i f N was the number of species w i t h one i n d i v i d u a l 
i n the sample, then N/2 was approximately the number of species w i t h 
two indiv iduals , N/3 was approximately the number of species w i t h three 
indiv iduals , and so on. Unfortunately , this mathemat ica l model had the 
inconvenient property t h a t i t diverged: the sum given by N[l +^ + ^ + . . . ) , 
i f continued indefinitely, wou ld predict an inf ini te number of species i n the 
sample. 

R. A . Fisher proposed a modi f icat ion of the model . Fisher supposed 
t h a t the expected numbers of species in the sample might be propor t i ona l 
t o the terms of a negative b inomia l d i s t r i b u t i o n . U p o n analyzing the data 
of Corbet and W i l l i a m s , Fisher found t h a t the estimated values of the 
parameter k i n the negative b inomia l were invariably smal l , usually quite 
close to zero. Fisher reduced the number of parameters i n the model by 
t a k i n g the l i m i t A; —> 0, s —> oo i n such a way t h a t 

sk—ya (3.1) 

i n the negative b inomia l model . The quant i ty s is the propor t i ona l i ty con­
stant i n the negative b inomia l terms, representing the number of species 
i n the ecological c ommuni ty being sampled (we must note t h a t the l i m i t 
(3.1) never expl i c i t ly appears in Fisher's discussion (Fisher et a l . , 1943), 
b u t rather is more or less impl ied ) . The result was t h a t the expected n u m ­
ber of species w i t h r individuals i n the sample, m,. , became propor t i ona l 
t o the terms of a logseries d i s t r i b u t i o n : 

m , = ^ r = 1 , 2 , 3 , . . . (3.2) 

where a > 0 and 0 < g < 1. 
The logseries d i s t r i b u t i o n has been used extensively since Fisher et 

a l . (1943) to describe species frequencies, most notably by C. B . Wi l l i ams 
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(1964) and R. A . K e m p t o n (Kempton and Taylor , 1974, 1979; K e m p t o n , 
1975; Taylor et a l . , 1976). 

3.2 Preston's Lognormal Mode l 

F . W . Preston published an inf luential objection to the logseries model a 
few years after the Fisher et a l . paper appeared (Preston, 1948). Preston 
worked w i t h data sets on b i r d communities as wel l as m o t h communit ies , 
inc luding some of W i l l i a m s ' data. Preston grouped the data into l ogar i th ­
mic abundance intervals which he called "octaves": the number of species 
w i t h 1-2 individuals i n the samples, w i t h 2-4 indiv iduals , w i t h 4-8 i n d i ­
v iduals , etc., were displayed as a frequency histogram. Preston observed 
t h a t the histograms, when drawn on such a logar i thmic scale, tended to 
have modes, and i n fact , tended to look quite Gaussian. Preston fitted 
a ( left -truncated) n o r m a l curve to the histograms, wh i ch seemed to de­
scribe the data sets very wel l . Since Preston's paper, the n o r m a l curve has 
been widely used t o "graduate," i n Preston's words, species frequency data 
grouped into logarithmic abundance intervals (see reviews by W h i t t a k e r , 
1972, and May, 1975). 

3.3 Sampling Considerations 

These applications of the lognormal as a species frequency model have u n ­
fortunate ly been marred by a lack of stat ist ical r igor . Preston and subse­
quent investigators i n many cases fit the Gaussian curves to the histograms 
by eye. Later , ecologists employed nonlinear regression routines t o find 
the least-squares fits of the Gaussian curves to the histograms (Gauch and 
Chase, 1974). Such procedures ignore any probabil ist ic content of the Gaus­
sian curve, ignore the intr ins ical ly discrete nature of the data , and ignore 
sampling mechanisms. Lacking an explic it l ikel ihood funct ion , the ecolo­
gists are unable to provide val id confidence intervals for the parameters, 
test for goodness of fit, or tests for differences between samples. 

Statisticians, i n fact, have been unable to agree on the appropriate 
sampling model to use in conjunction w i t h either the logseries or the log-
n o r m a l models (see, for instance, Rao, 1971; Watterson, 1974; K e m p t o n , 
1975; Engen, 1979; Lo and W a n i , 1983). I t is unclear whether Fisher or ig ­
inal ly had an explic it sampling model in m i n d for the logseries. I t is the 
authors ' opinion t h a t Kempton 's (1975) sampling model is l ikely to find 
the widest use i n species frequency studies, though more stat ist ical and 
ecological research on this question certainly remains t o be done. We w i l l 
brief ly describe Kempton 's sampling model here, w i t h a t tent ion to the role 
of the lognormal d i s t r i b u t i o n in this approach. 
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Let Nj. be the number of species w i t h r representatives i n the sample, 
r = 1,2,3, The numbers X j , X j , . . . , are assumed to be independent, 
b u t not identical ly d i s t r ibuted , Poisson random variables. The t o t a l number 
of species i n the sample is assumed to be a Poisson random variable w i t h 
mean s. Also, the number of individuals i n the sample of a part i cu lar 
species is assumed to be a Poisson random variable w i t h mean A. The 
values of A differ among species; i t is assumed t h a t the A values arise f r o m 
a continuous d i s t r i b u t i o n on the positive real line w i t h p d f / ( A ) . The result 
of these assumptions is t h a t 

° ° - A r 
E[N,]=m, = s l '—^f{X)dX (3.3) 

0 

The p d f / ( A ) wou ld typ ica l ly be t h a t of either a lognormal or a gamma 
d i s t r i b u t i o n . Thus , the observed species frequencies, n j , n j , are re­
alized values of independent Poisson variables, X j , X j , . . . , whose means, 
m j , . . . , contain a common set of u n k n o w n parameters. The u n k n o w n 
parameters are found i n (3.3) and consist of s plus the parameters i n the 
p d f / ( A ) . 

I f the A values arise f r o m a lognormal (iJ,,a^) pdf , then 

oo 

m , ( s , M , 0 = ^,^^22^)1/2/ A ' - ^ e x p [ - A - ( l o g A - M ) V ( 2 ^ ' ) ] r f A (3.4) 
0 

I n other words, the expected values m,. are propor t i ona l to the terms of 
a discrete Poisson-lognormal d i s t r i b u t i o n (Holgate, 1969; Bu lmer , 1974; 
K e m p t o n and Taylor , 1974; Shaban, this volume) . For the gamma model , 
w i t h / ( A ) = [P''/T{k)]X''-'^e-l^^, the m,. values are propor t i ona l to the 
terms of a negative b inomia l d i s t r i b u t i o n : 

m,(s,A:,/?)=s(^^+|;~^)gV (3.5) 

where q = 1 — p = 1 / (1 + /?). Taking Fisher's l i m i t s ^ 0 0 , A; —v 0, and 
sk —y a here produces the logseries: 

' " r K ? ) = — (3.6) 
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Let the u n k n o w n parameters be denoted by the vector 0. The l i k e l i ­
hood funct ion becomes the product of Poisson probabi l i t ies : 

r = l 

W i t h product-Poisson sampling, i teratively reweighted least squares could 
be used for calculating m a x i m u m l ikel ihood estimates (Jennrich and Moore , 
1975). Using the lognormal model , though , requires an add i t i ona l rout ine 
for numerical integrat ion in order to evaluate the Poisson-lognormal terms 
(3.4). 

3.4 Preston's Canonical Hypothesis 

Preston (1962) noticed a curious pa t te rn i n his lognormal curves of species 
frequencies. The pa t te rn formed the basis of "Preston's Canonical H y p o t h ­
esis" of species abundance. The Canonical Hypothesis (CH) essentially 
states t h a t the species frequency curves observed i n nature w i l l be predom­
inant ly lognormal , and t h a t the parameter values observed w i l l be f ound 
only i n a smal l , constrained region of the parameter space. The C H has 
at tracted considerable at tent ion in the ecological l i terature (see May , 1975). 

Specifically, the C H consists of a lognormal d i s t r i b u t i o n w i t h the f o l ­
lowing s tructure . We must first define the so-called indiv iduals curve. I f 
/ ( A ) is the species abundance p d f in (3.3), then the expected number of 
species w i t h abundances greater t h a n A would be 

oo 

5 j f{u)du (3.8) 

A 

I t wou ld follow t h a t the expected t o t a l abundance of a l l those species w i t h 
abundance greater t h a n A would be 

oo 

s j uf{u)du (3.9) 
A 

Because of (3.8) and (3.9), s / (A) is called the species curve, and sA / (A) 
is called the individuals curve. I n economics, i f / ( A ) represents a d i s t r i b u ­
t i o n of wea l th among indiv iduals , then (3.8) is the number of indiv iduals 
w i t h weal th greater t h a n A, and (3.9) is the t o t a l amount of weal th these 
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individuals have cornered. O n a logarithmic scale, w i t h r = log A, these 
curves become se^f{e^) and se^''/(e' '), respectively. W h e n / ( A ) is a log-
normal pdf , these logar i thmic species and individuals curves are of course 
Gaussian. 

Preston f ound , t h r o u g h examining many of his logar i thmic h is togram 
diagrams, t h a t the mode of the logarithmic individuals curve tended to fa l l 
i n the octave of the largest species. I n other words, a randomly picked 
ind iv idua l (dollar) wou ld most l ikely come f r o m the logar i thmica l ly largest 
species (wealthiest i n d i v i d u a l ) , rather t h a n f r o m , say, a group of species 
w i t h intermediate logarithmic abundance (middle class). Th is p a t t e r n oc-
cured repeatedly in Preston's eye-fitted curves, leading Preston to propose a 
"canonical" lognormal d i s t r i b u t i o n i n which the parameters are constrained 
so as t o f ix this mode = max relationship. 

Ecologists, j u d g i n g f r o m their l i t erature , have pract ical ly come to re ­
gard the C H as an established empir ical law of nature . Sugihara (1980), 
for instance, states: "Few propositions in ecology have as much empir i ca l 
support as Preston's (1962) canonical hypothesis of species abundance." 
Sugihara goes on t o propose a refinement of the lognormal sequential break­
age model (see Ai tchison and B r o w n , 1957; Pielou, 1975) wh i ch produces 
a canonical lognormal d i s t r i b u t i o n : the pieces being broken are niches i n 
a mult id imensional niche space, and a breakage corresponds t o the evolu­
t i onary s p l i t t i n g of a species or a successful invasion of a niche occupied 
by another species. Preston himself regards departures f r o m the canonical 
lognormal d i s t r i b u t i o n as indicative of defective, nonrandom sampl ing , of 
sampling heterogeneous ecological communities , or of sampling overpacked 
communities w i t h more species t h a n niches (Preston, 1980). 

The enthusiasm ecologists have for this hypothesis must be judged f r o m 
a stat ist ical s tandpoint as premature . The studies support ing the C H are 
based on data sets analyzed w i t h dubious parameter est imation methods 
having no known stat ist ical val id i ty . B y contrast, Kempton 's extensive 
analyses of B r i t i s h m o t h communities incorporated the explic it sampling 
model and l ikel ihood funct ion described earlier. These studies reported no 
evidence t h a t the canonical lognormal is the best f i t t i n g d i s t r i b u t i o n ; i n 
fact, the logseries model tended to outper form the f u l l lognormal model for 
many of the m o t h collections (Kempton and Taylor , 1974; Taylor et a l . , 
1976). 

3.5 Statistics of Preston's Canonical Hypothesis 

P a t i l and Tai l l ie (1979a) have defined the C H i n statist ical ly precise terms. 
The ir work provides formal statist ical hypotheses concerning the C H t h a t 
potent ia l ly could be tested for any data set on species frequencies. 
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P a t i l and Tai l l ie define the predicted abundance of the largest species 
a.s 

A _ = F - ( ^ ) (3.10) 

where F{X) = 1 — F(X), and F is the cumulative d i s t r i b u t i o n funct ion given 
by 

A 

F{X)=jf[u)du (3.11) 

0 

The idea arises f r o m the fact t h a t E[F[h.^^A)\ l / ( s + l ) , where A^j,,,,^ is the 
largest observation f r o m a random sample of size s f r o m / ( A ) . T h e n Aj,,^,^ 
is a convenient, tractable approx imat ion to X[AJQ^X1- The mode, f of the 
logar i thmic individuals curve is found by sett ing dlog[se^'"/(e'")]/c?r = 0. 
The C H is then formal ly stated by P a t i l and Tai l l ie as log X^^^^ « f , or 

f - ' ( j l - ) . . ' (3.12) 

Using a lognormal (/X,<T^) p d f for / ( A ) , the C H becomes 

where $ is the r i ght t a i l of a s tandard n o r m a l d i s t r i b u t i o n . Th is statement 
of the C H amounts to a constraint on the parameters s and a"^. I f s is large, 
as is the case for most species abundance studies, then 

(3.13) 

2 log s — log log s — log(47r) w (3-14) 

provides a very good approx imat ion to the relationship (3.13). 
P a t i l and Tail l ie further po int out t h a t other d is tr ibut ions besides the 

lognormal could be used for / ( A ) i n the C H (3.12). For instance, the gamma 
model w i t h / ( A ) = [ )3 '= /r (A; ) ]A ' ' - ie -^^ yields the fo l lowing version of the 
C H : 

r(fc,fc + i ) 1 
r(A;) s + 1 

(3.15) 
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Here T{k,x) is the incomplete gamma funct ion defined by 

oo 

T{k,x) = J t^-^-Ut (3.16) 
X 

Thus , the C H for the gamma implies a constraint between the parameters 
5 and k. 

The parameters k i n the gamma and cr̂  i n the lognormal are related 
t o the degree of evenness of the species abundances. The coefficient of 
var iat ion i n the gamma is 1/\/k, whi le i n the lognormal i t is [exp (<T̂  ) - 1 ] . 
Large A;, or smal l a^, corresponds to a small coefficient of var iat ion i n the 
species abundances. The species would tend to have similar A values under 
such circumstances, result ing i n greater evenness of the abundances i n the 
community . Tai l l ie (1979) and P a t i l and Tail l ie (1979b) have formalized this 
not ion of evenness i n species curves using the concept of Lorenz ordering 
f r o m economics. They have shown t h a t A; and a"^ completely determine the 
Lorenz ordering for the gamma and lognormal models. 

The C H constraints (3.13) and (3.15), as pointed out by P a t i l and 
Tai l l ie (1979a), i m p l y an inverse relationship exists between species richness 
and evenness in an ecological community . For the gamma model , i n fact , 
the relationship (3.15) between k and s is wel l -approximated by 

sk « 4.56 (3.17) 

for large s and small A;. Th is is found by d iv id ing b o t h sides of (3.15) by A;, 
tak ing the l i m i t s —> oo. A; — 0 , sA; —> a , and then numerical ly evaluating 
the integral . So Preston's C H applied to the gamma model turns out t o be 
a special case [a ss 4.56) of Fisher's l i m i t i n g logseries! 

A type of l i m i t i n g lognormal model can be derived using the C H , i n 
analogy w i t h the logseries as a l i m i t i n g f o r m of the gamma model . The 
C H constraint (3.13) is approximately a linear relationship between a and 
5 for large s : <T « a + 6s. I n the Poisson-lognormal model (3.4) for species 
frequencies, one can subst i tute CT = a + 65 and take the l i m i t as s —> 0 0 , 
producing 

l i m m,.(s,M, ( a + 6s)^) = - (3.18) 
5 — • O O T 

for r = 1 , 2 , . . . , w i t h 7 = l / [ 6 ( 2 7 r ) i / 2 ] . I n a sense, we have come f u l l circle 
i n recovering Corbet 's or ig inal harmonic series model for species frequencies 
as a l i m i t i n g lognormal model . We po int out that P a t i l and Tai l l ie (1979a) 
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studied a somewhat different divergent series as a l i m i t i n g lognormal model 
obtained using a different l i m i t i n g scheme. 

The topic of species frequency d is tr ibut ions , f r o m an ecological s tand­
po in t , wou ld now benefit f r o m some large-scale, serious data analysis. There 
is presently no reason to draw any more sweeping conclusions based on 
makeshift est imation techniques and eyeball test ing. Claims concerning 
wh i ch d istr ibut ions fit best, changes i n d istr ibut ions or parameters fol low­
ing ecological disturbance, or the C H should now be rigorously examined 
through careful a t tent ion to appropriate statist ical model ing of sampling 
procedures. I t is excit ing to contemplate what patterns i n nature remain to 
be discovered through a healthy inject ion of stat ist ical t h i n k i n g into species 
abundance studies. 

4. M O D I F I E D L O G N O R M A L M O D E L S AS D E S C R I P T I V E 
A B U N D A N C E M O D E L S 

The lognormal is commonly used i n ecology i n a purely descriptive role as 
a model of abundance of a single species present i n different samples. I f 
many samples are taken across t ime or space, the abundance of a species 
typica l ly varies greatly f r o m sample to sample. The lognormal is used to 
describe these abundances most ly for convenience. Parameter estimates for 
the lognormal are easy to compute; and , an added a t t rac t i on for ecologists 
is the theoretical underp inning of the lognormal as a single species g r o w t h 
model . (Section 2) . 

However, ecological data are frequently not so cooperative. Ecologi­
cal studies can contain complicated factors, and the lognormal d i s t r i b u t i o n 
often requires some modi f icat ion for use as a descriptive model of abun­
dance. We w i l l not dwell here on reviewing standard descriptive uses of 
the lognormal i n ecology. Rather , we w i l l ment ion here a few of the typ i ca l 
modifications to the lognormal t h a t are i n use. 

4.1 Poisson-Lognormal 

When p lankton are sampled using replicated net hauls or other methods, 
the frequency d i s t r ibut i on of sampled abundances tends t o be a u n i m o d a l , 
right-skewed d i s t r i b u t i o n resembling a lognormal (Barnes and M a r s h a l l , 
1951; Barnes, 1952). However, p lankton samples are typ ica l ly count data , 
representing numbers of particles suspended i n a u n i t volume of water . A 
given sample could be assumed to have a Poisson d i s t r i b u t i o n w i t h mean 
parameter A. A d d i t i o n a l between-sample var iab i l i ty could then be induced 
by a m i x i n g d i s t r i b u t i o n w i t h pd f / ( A ) . The p lankton count d i s t r i b u t i o n is 
Poisson-lognormal i f the m i x i n g d i s t r i b u t i o n is lognormal . The probabi l i t ies 
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would then be 

oo 

P[X=x] = 
1 

A " ' - ! e x p [ - A - (log A - / i ) V(2CT̂ )] dA (4.1) 
x ! ( a 2 2 7 r ) i / 2 

0 

where X is the number of particles i n a u n i t volume of water . This d i s t r i ­
b u t i o n was discussed earlier in the entirely different context of species fre­
quency models. Cassie (1962) gives an extensive discussion of the Poisson-
lognormal an a p l a n k t o n abundance model , w i t h part i cu lar a t tent ion t o its 
differences f r o m the negative b inomia l . Further statist ical properties and 
applications as a p lankton model are developed by Reid (1981). Read­
ers are also referred to the article i n this volume by S. A . Shaban on the 
Poisson-lognormal d i s t r i b u t i o n . 

4.2 De l ta -Lognormal 

Data f r o m surveys on abundances of marine organisms, inc luding p l a n k t o n , 
often contain a large propor t i on of zeros. The lognormal d i s t r i b u t i o n t y p i ­
cally provides a reasonable description of abundances for samples i n w h i c h 
organisms are present. The spatial d i s t r i b u t i o n of marine organisms tends 
to be patchy, though ; samples are drawn f r o m a mosaic of areas where 
organisms are present and areas where organisms are absent. W h e n the 
objective of such surveys is t o estimate mean abundance, there are advan­
tages t o using a modif ied lognormal d i s t r i b u t i o n w i t h an added discrete 
probab i l i ty mass at zero (Pennington, 1983). Such a d i s t r i b u t i o n is called 
a de l ta -d i s t r ibut ion by Aitchison and B r o w n (1957) and a delta- lognormal 
d i s t r i b u t i o n by K . Shimizu i n Chapter T w o of the present volume. The 
delta- lognormal has "pd f " given by 

g{x) = a6{x) + (1 - Q ) / ( X ) (4.2) 

where f[x) is a lognormal pdf , and 6{x) is the Dirac delta funct ion defined 
by 

b 
o < 0 < 6 

otherwise 
(4.3) 

A 

and 0 < a < 1. Es t imat ion for d istr ibut ions of the general f o r m (4.2) was 
studied by Aitchison (1955). 
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The purpose of the marine abundance surveys often is t o estimate 
E[X] = K, wh i ch for the delta- lognormal becomes 

«; = E[X] = (1 - a)e '*+(<' ' /2) (4.4) 

Suppose a random sample of size n d rawn f r o m the delta- lognormal has 
m nonzero values, and suppose y and are the sample mean and sample 
variance, respectively, of the log-transformed nonzero values i n the sam­
ple. One unbiased estimate of K is of course the ord inary sample mean of 
the observations, zeros and a l l . However, y , s^, and m/n are j o i n t com­
plete sufficient statistics for p, (7^, and a , and this fact can be exploited t o 
produce a much better estimate. Aitchison (1955) obtained the m i n i m u m 
variance unbiased estimate of K; Pennington (1983) obtained the M V U E 
for the variance of the estimate and applied the results to fish and p lank ­
t o n survey data. Pennington noted t h a t the M V U E for K is considerably 
more efficient t h a n the ord inary sample mean under the h igh var iab i l i t y 
conditions encountered i n marine abundance surveys. These results and 
generalizations are contained i n Section 3.1 of Chapter T w o of the present 
volume. 

We m i g h t remark here t h a t i t wou ld be useful to s tudy the add i t i on 
of extra zeros to the Poisson-lognormal, i n connection w i t h marine surveys 
invo lv ing count data . 

4.3 Del ta -Compound-Lognormal 

W h e n terrest ial p lant communities are sampled w i t h quadrats , the data 
often consist of large proport ions of quadrats w i t h ' n o p lants , and cont inu­
ous, r ight-skewed distr ibut ions of p lant abundances among quadrats where 
plants are present. P lant abundance i n such studies is typ i ca l ly measured 
i n terms of cover. The s i tuat ion is more dif f icult t h a n the preceding marine 
surveys i n wh i ch the delta- lognormal could be used, for two reasons: (a) 
P lant cover present i n a quadrat arises f r o m a random number of i n i t i a l 
propagules (seeds, rhizomes, etc.) . (b) Plant cover typ ica l ly grows as a 
funct ion of t ime . 

Steinhorst et a l . (1985) proposed d i s t r i b u t i o n models t o describe p lant 
cover development i n forest communities fo l lowing c learcutt ing and b u r n ­
ing . The models consist of a randomly stopped sum of continuous i i d r a n ­
d o m variables, plus an addi t ional probab i l i ty mass at zero. Such a model 
w o u l d have a Laplace-Stieltjes t rans form given by 

^ y ( s ) = a + ( l - a ) ^ j v { - l o g 0 x W ) (4-5) 
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where Y is the t o t a l cover on a quadrat , N is the number of i n i t i a l propag­
ules on the quadrat (a discrete random variable on the non-negative i n ­
tegers), X is the size at ta ined by a p lant at the t i m e of sampl ing , and 
<j>x{s) = E[e-'^], (/>x{s) = E{e-'^], <PY{S) = E{e-'^]. The parameters i n 
the d i s t r i b u t i o n of X were assumed to be functions of t ime such t h a t E[X] 
would follow a g rowth law like the logistic. Steinhorst et a l . consider models 
i n which N is either Poisson or negative b i n o m i a l , and X is either gamma or 
normal . They were able t o compute m a x i m u m l ikel ihood estimates for data 
sets on various species of shrubs. The estimates were computed using the 
E M a l g o r i t h m for those species which grow f r o m rhizomes, since N is then 
an unobservable variable ( " i n d i v i d u a l " plants not being dist inguishable) . 

Whi l e Steinhorst et a l . (1985) d i d not expl i c i t ly discuss using the log-
normal as a d i s t r i b u t i o n model for X, they have now investigated its use 
and are s tudying statist ical inference problems for models i n the f o r m (4.5) 
i n more generality (Steinhorst, manuscript in preparat ion) . The lognormal 
would seem to be a promis ing candidate for model ing the size at ta ined by 
a p lant at a given t ime . The stochastic Gompertz model (see Section 2.4), 
for instance, wou ld provide an explic it lognormal model w i t h a mean t h a t 
evolves according to a wel l -known growth law. The lognormal , however, 
does not have a convenient Laplace-Stieltjes t rans form, and so w r i t i n g the 
model i n the f o r m (4.5) may not be very useful. 

R E F E R E N C E S 

Aitchison, J . (1955). On the distribution of a positive random variable having a 
discrete probability mass at the origin, J. Amer. Statist. Assoc., 50, 901-908. 

Aitchison, J . and Brown, J . A . C. (1957). The Lognormal Distribution, Cambridge 
University Press, Cambridge, Massachusetts. 

Barnes, H . and Marshall, S. M . (1951). On the variability of replicate plank­
ton samples and some applications of 'contagious' series to the statistical 
distribution of catches over restricted periods, J. Marine Biol. Assoc., SO, 
233-263. 

Barnes, H . (1952). The use of transformations in marine biological statistics, J. 
Cons. Explor. Mer., 18, 61-71. 

Braumann, C. A . (1983). Population growth in random environments. Bull. Math. 
Biol, 45, 635-641. 

Bulmer, M . G. (1974). On f i tt ing the Poisson lognormal distribution to species-
abundance data. Biometrics, SO, 101-110. 

Capocelli, R. M . and Ricciardi, L . M . (1974). A diffusion model for population 
growth in random environment, Theor. Popul Biol, 5, 28-41. 

Cassie, R. M . (1962). Frequency distribution models in the ecology of plankton 
and other organisms, J. Anim. Ecol, SI, 65-92. 



328 Dennis and P a t i l 

Dennis, B. and Pati l , G. P. (1984). The gamma distribution and weighted mul ­
timodal gamma distributions as models of population abundance. Math. 
Biosci., 68, 187-212. 

Engen, S. (1979). Abundance models: sampling and estimation, Statistical Dis­
tributions in Ecological Work (J . K. Ord , G. P. Pati l , and C. Taillie, eds.). 
International Co-operative Publishing House, Fairland, Maryland, pp. 313-
332. 

Feldman, M . W. and Roughgarden, J . (1975). A population's stationary distr i ­
bution and chance of extinction in a stochastic environment w i t h remarks on 
the theory of species packing, Theor. Popul. Biol., 7, 197-207. 

Fisher, R. A . , Corbet, A . S., and Williams, C. B. (1943). The relation between 
the number of species and the number of individuals in a random sample of 
an animal population, J. Anim. Ecol., I S , 42-58. 

Freedman, H. I . (1980). Deterministic Mathematical Models in Population Ecology, 
Marcel Dekker, New York. 

Gauch, H . G. and Chase, G. B. (1974). F i t t ing the Gaussian curve to ecological 
data. Ecology, 55, 1377-1381. 

Gray, A . H. and Caughey, T . K . (1965). A controversy in problems involving 
random parametric excitation, J. Math, and Phys., 44, 288-296. 

Holgate, P. (1969). Species frequency distributions, Biometrika, 56, 651-660. 
Horsthemke, W. and Lefever, R. (1984). Noise-Induced Transitions: Theory and 

Applications in Physics, Chemistry, and Biology, Springer-Verlag, Berlin. 
Jennrich, R. I . and Moore, R. H. (1975). Maximum likelihood estimation by 

means of nonlinear least squares. Am. Statist. Assoc. Proc. Statist. Comput. 
Sec, 57-65. 

Kar l in , S. and Taylor, H. M . (1981). A Second Course in Stochastic Processes, 
Academic Press, New York. 

Kempton, R. A . (1975). A generalized form of Fisher's logarithmic series, Bio­
metrika, 6S, 29-37. 

Kempton, R. A . and Taylor, L. R. (1974). Log-series and log-normal parameters 
as diversity discriminants for the Lepidoptera, J. Anim. Ecol., 43, 381-399. 

Kempton, R. A . and Taylor, L. R. (1979). Some observations on the yearly vari­
ability of species abundance at a site and the consistency of measures of 
diversity. Contemporary Quantitative Ecology and Related Ecometrics (G. P. 
Patil and M . Rosenzweig, eds.). International Co-operative Publishing House, 
Fairland, Maryland, pp. 3-22. 

Lewontin, R. C. and Cohen, D. (1969). On population growth in a randomly 
varying environment, Proc. Nat. Acad. Sci., 62, 1056-1060. 

Lo, H. and Wani, J . K . (1983). Maximum likelihood estimation of the parameters 
of the invariant abundance distributions. Biometrics, 39, 977-986. 

MacArthur, R. H. (1960). On the relative abundance of species. Am. Nat., 94, 
25-36. 

Mahfoud, M . and Pati l , G. P. (1982). On weighted distributions. Statistics and 
Probability: Essays in Honor of C. R. Rao (G. Kallianpur, P. R. Krishnaiah, 
and J . K . Ghosh, eds.), North-Holland, pp. 479-492. 



Appl icat ions i n Ecology 329 

May, R. M . (1975). Patterns of species abundance and diversity. Ecology and 
Evolution of Communities ( M . L. Cody and J . M . Diamond, eds.), Belknap 
Press, Cambridge, Massachusetts, pp. 81-120. 

Pati l , G. P. (1984). Studies in statistical ecology involving weighted distributions, 
in Proceedings of the Indian Statistical Institute Golden Jubilee International 
Conference in Statistics: Applications and New Directions (J . K . Ghosh and 
J . Roy, eds.). Statistical Publishing Society, Calcutta, India, pp. 478-503. 

Pati l , G. P., Boswell, M . T. , Joshi, S. W., and Ratnaparkhi, M . V. (1984a). 
Dictionary and Bibliography of Statistical Distributions in Scientific Work. Vol. 
1: Discrete Models. International Co-operative Publishing House, Fairland, 
Maryland. 

Pati l , G. P., Boswell, M . T. , and Ratnaparkhi, M . V. (1984b). Dictionary and 
Bibliography of Statistical Distributions in Scientific Work. Vol. 2: Continuous 
Univariate Models. International Co-operative Publishing House, Fairland, 
Maryland. 

Pati l , G. P., Boswell, M . T. , Ratnaparkhi, M . V. , and Roux, J . J . (1984c). Dic­
tionary and Bibliography of Statistical Distributions in Scientific Work. Vol. 3: 
Multivariate Models. International Co-operative Publishing House, Fairland, 
Maryland. 

Pati l , G. P. and Ord , J . K . (1976). On size-biased sampling and related form-
invariant weighted distributions, Sankhya B, 38, 48-61. 

Pati l , G. P. and Rao, C. R. (1977). The weighted distributions: a survey of their 
applications. Applications of Statistics (P. R. Krishnaiah, ed.), North-Holland, 
pp. 383-405. 

Pati l , G. P. and Rao, C. R. (1978). Weighted distributions and size-biased sam­
pling w i t h applications to wildlife populations and human families. Biomet­
rics, 34, 179-189. 

Pati l , G. P. and Taillie, C. (1979a). Species abundance models, ecological diver­
sity, and the canonical hypothesis. Bull. Int. Statist. Inst., 44i 1-23. 

Pati l , G. P. and Taillie, C. (1979b). A n overview of diversity. Ecological Diversity 
in Theory and Practice (J . F. Grassle, G. P. Pati l , W. Smith, and C. Taillie, 
eds.). International Co-operative Publishing House, Fairland, Maryland, pp. 
3-27. 

Pennington, M . (1983). Efficient estimators of abundance, for fish and plankton 
surveys. Biometrics, 39, 281-286. 

Pielou, E. C. (1975). Ecological Diversity, John Wiley, New York. 
Preston, F. W. (1948). The commonness, and rarity , of species. Ecology, 29, 254-

283. 
Preston, F. W. (1962). The canonical distribution of commonness and rarity . 

Ecology, 43, 185-215 and 410-432. 
Preston, F. W. (1980). Noncanonical distributions of commonness and rar i ty . 

Ecology, 61, 88-97. 
Rao, C. R. (1965). On discrete distributions arising out of methods of ascer­

tainment. Classical and Contagious Discrete Distributions (G. P. Pati l , ed.). 
Statistical Publishing Soc, Calcutta, pp. 320-332. 



330 Dennis and P a t i l 

Rao, C. R. (1971). Some comments on the logarithmic series distribution in 
the analysis of insect trap data. Spatial Patterns and Statistical Distributions 
(G. P. Pat i l , E. G. Pielou, and W. E. Waters, eds.). The Pennsylvania State 
University Press, University Park, Pennsylvania pp. 131-142. 

Reid, D . D . (1981). The Poisson lognormal distribution and its use as a model 
of plankton aggregation. Statistical Distributions in Scientific Work, Vol. 6 
(G. Taillie, G. P. Pati l , and B. A . Baldessari, eds.), D. Reidel, Dordrecht, 
Holland, pp. 303-316. 

Ricciardi, L. M . (1977). Diffusion Processes and Related Topics in Biology, Spring­
er-Verlag, Berlin. 

Steinhorst, R. K. , Morgan, P., and Neuenschwander, L . F. (1985). A stochastic-
deterministic simulation model of shrub succession. Ecological Modelling, 29, 
35-55. 

Sugihara, G. (1980). Minimal community structure: an explanation of species 
abundance patterns. Am. Nat, 116, 770-787. 

Taillie, C. (1979). Species equitability: a comparative approach. Ecological Diver­
sity in Theory and Practice (J . F. Grassle, G. P. Pati l , W. Smith, and C. 
Taillie, eds.). International Co-operative Publishing House, Fairland, Mary­
land, pp. 51-62. 

Taylor, L. R., Kempton, R. A . , and Woiwood, I . P. (1976). Diversity statistics 
and the log-series model, J. Anim. Ecol., 45, 255-272. 

Tuckwell, H . C. (1974). A study of some diffusion models of population growth, 
Theor. Popul. Biol., 5, 345-357. 

Turell i , M . (1977). Random environments and stochastic calculus, Theor. Popul. 
Biol., 12, 140-178. 

Watterson, G. A . (1974). Models for the logarithmic species abundance distribu­
tions, Theor. Popul. Biol., 6, 217-250. 

Whittaker, R. H . (1972). Evolution and measurement of species diversity. Taxon, 
21, 213-251. 

Williams, C. B. (1964). Patterns in the Balance of Nature, Academic Press, New 
York. 


