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1. INTRODUCTION

Perhaps the lognormal distribution finds the widest variety of applications
in ecology. Ever since Malthus and Darwin, biologists have been acutely
aware that populations of animals and plants grow multiplicatively. Study-
ing the consequences arising from the enormous potential for increase pos-
sessed by most species on earth forms a major component of modern eco-
logical research. Whenever quantities grow multiplicatively, the lognormal
becomes a leading candidate for a statistical model of such quantities.

In this chapter, we discuss some of the theoretical and descriptive mod-
eling studies in ecology that have featured the lognormal. We focus pri-
marily on the lognormal as a model of the abundances of species and not
as a model of the size growth of individual organisms. We review and cri-
tique several of the more important ecological modeling approaches related
to the lognormal; in some cases, we display new results or offer thoughts
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304 Dennis and Patil

on future statistical and ecological research problems. The material in this
paper is divided into three sections, for which we here provide the following
summaries.

In Section 2, we reexamine the lognormal as a theoretical model of pop-
ulation abundance. The traditional multiplicative growth model is recast as
a stochastic differential equation. Population size then becomes a diffusion
process, that is, a Markov process with sample paths that are continuous
functions of time. The transition distribution of the process is lognormal;
various other statistical properties such as time-dependent measures of cen-
tral tendency are obtained. The model is of limited practical usefulness in
ecology, as it is essentially just a stochastic version of exponential growth.
The model could only describe growth of a species for a short time interval,
since all species eventually encounter environmental limits to growth.

However, we also describe a different stochastic growth model leading
to the lognormal. The model is a stochastic differential equation based on
the Gompertz growth equation. The model contains an underlying deter-
ministic stable equilibrium for population size, representing the outcome
of growth regulated by limiting environmental resources. The transition
distribution for population size, as well as the equilibrium distribution, is
lognormal in form. Thus, ecologists can regard the lognormal not only as a
model of unbounded exponential growth, but also as a model of population
regulation in the presence of an environmental carrying capacity.

An interpretive problem arises when using stochastic differential equa-
tions. A given stochastic differential equation represents two different dif-
fusion processes, depending on whether Ito or Stratonovich stochastic in-
tegrals are used. A main reason for using stochastic differential equations
is to approximate more complicated stochastic models. The details of the
approximation process determine which type of stochastic integral to use.
We show that the statistical properties of both lognormal models under
the Stratonovich interpretation are easily recovered from those properties
under the Ito interpretation, and vice versa, using the concept of weighted
distributions.

We review in Section 3 the role of the lognormal as a model of species
frequencies. The lognormal is confined to representing a single species in
Section 2; by contrast, in Section 3, the lognormal represents patterns dis-
played by ecological communities with dozens, even hundreds, of species.
Ecological and statistical research on quantitative species abundance pat-
terns began in earnest with the introduction of the logseries model in the
early 1940s. Shortly afterward, the lognormal model was proposed in reac-
tion to the logseries, since many data sets did not appear J-shaped when
plotted on a logarithmic scale. Numerous ecological studies have incorpo-
rated the lognormal model. Unfortunately, ecologists have not paid enough
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attention to sampling considerations and proper inference methods in these
studies. As a result, whether the logseries, the lognormal, or some other
distribution will be more widely applicable in species abundance studies
is an open question. We try to clarify the problems of making statisti-
cal inferences for species frequency models, and we describe one promising
inference approach that has been proposed but seldom used.

One intriguing aspect of the lognormal species frequency distribution
is the so-called Canonical Hypothesis of species abundance. This hypoth-
esis arose from an empirical pattern that had been noticed on logarithmic
species frequency plots. The plots indicated that a randomly selected indi-
vidual organism in the community would most likely come from a species
whose log-abundance was in the same class as that of the largest species.
The hypothesis received considerable attention in the ecological literature,
and a “canonical” lognormal distribution was proposed having parameters
constrained in such a fashion as to fix this abundance relationship. We
review this hypothesis in Section 3, and we raise a cautionary note to the
effect that the Canonical Hypothesis has seldom been formally tested in
any way known to be statistically valid. The hypothesis has been stud-
ied more recently in the statistics literature, though. The results, which
we summarize in Section 3, suggest that a new level of statistical aware-
ness should be injected into the empirical studies of species frequency pat-
terns.

Possibly the main role of the lognormal in ecology is simply to serve as
the handiest adjustable wrench in the toolbox of statistical distributions.
Ecological abundance data are intrinsically positive, with a few enormously
high data points typically arising in every study. The lognormal distribution
is an ideal descriptor of such data, with a positive range, right skewness,
heavy right tail, and easily computed parameter estimates.

Ecological data sets, however, sometimes contain complicating factors
which rule out the use of a simple two-parameter lognormal. In Section 4
we review three typical modifications of the lognormal. First, ecological
data sets often comsist of count data. The Poisson-lognormal distribution
represents a discrete version of the lognormal potentially applicable to such
cases. Second, ecological abundance surveys often contain an overly large
number of samples with abundances of zero. The delta-lognormal, formed
as a finite mixture of an ordinary lognormal distribution and a degenerate
(spike) distribution at zero, offers advantages when estimating mean abun-
dance is the objective of the surveys. Third, ecological abundances observed
in samples sometimes grew from random numbers of initial propagules in
each sample. We review a compound distribution structure recently pro-
posed for such data; the structure also provides a degenerate component
for added zeros.
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We adopt the following notation throughout the paper. If X = log N
has a normal distribution with probability density function (pdf) given by

fx(z) =

L (z—“)z] (1.1)

(o0227)1/z P [_ 202
where —o0 < £ < +00, that is, if
X ~ normal(u,0?) (1.2)

then N = eX has a lognormal distribution with pdf

1 p 2
fn(n) = n(02217r)1/2 exp [— ( og(;zoz)u) J (1.3)
and we write

N ~ lognormal(u,0?) (1.4)

For additional information on discrete and continuous statistical dis-
tributions, including those appearing in this paper, we refer the reader to
Patil et al. (1984a, 1984b, 1984c).

2. POPULATION GROWTH MODELS
2.1 Multiplicative Population Growth

MacArthur (1960) quantified for ecologists the notion that the abundance
of a single species should have, under certain circumstances, a lognormal
distribution. His reasoning was more intuitive than mathematical, but was
nonetheless adopted by ecologists as a principal explanation of observed
lognormal abundance patterns (May, 1975). MacArthur assumed that the
growth rate of a species could be represented by an ordinary differential
equation (ODE) of the form

= r(t)n() (2.1)

where n(t) is population abundance (typically measured in numbers of in-
dividuals or biomass per unit area or volume) at time ¢, and r(t) is the per
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individual (or per unit biomass) growth rate. This ODE integrates to

logn(t) = logng + / r(r)dr (2.2)
0

where n, = n(0). MacArthur noted that the function r(¢) might vary
randomly in time for some species due to fluctuations of environmental
factors. The integral in (2.2) could then be regarded as the accumulated
sum of random variables. MacArthur invoked the Central Limit Theorem
to predict that logn(t) would have a normal distribution.

Two features of MacArthur’s intuitive derivation are noteworthy: (a)
the idea of random fluctuations in the per individual growth rate, and (b)
the time-dependence of the normal distribution for log n(t). The fluctua-
tions, for the derivation to hold, must be of such a nature that the sum of
random variables given by X, + X, + -+ + X, where

X, = / r(r) dr (2.3)

and 0 = a5 < a; < ay <...< a; =t, conforms to one of the various Cen-
tral Limit Theorem schemes. The resulting normal distribution for log n(t)
would have a mean that essentially grows linearly with ¢ and a variance
that grows proportional to . Thus, two ecological conditions underlying
this derivation become apparent: (a) Any autocovariance of the fluctua-
tions must decay rapidly for the Central Limit Theorem to hold. (b) The
time ¢t must be relatively early in the population’s growth trajectory, before
state-dependent changes in r, due to crowding or food limitation, become
important. MacArthur pointed out that the model would only apply to
opportunistic species, or species colonizing unutilized resources.

2.2 Stochastic Differential Equations

It is useful to derive various statistical properties for stochastic models such
as MacArthur’s, in order to test them with ecological data. The analysis is
greatly simplified by using stochastic differential equations (SDEs). SDEs,
known also as diffusion processes, can serve as approximations to many
stochastic processes, including stochastic difference equations, branching
processes, and birth-death processes (see Karlin and Taylor, 1981, p. 168).
The approach to SDEs and lognormal growth models taken here follows
that of Dennis and Patil (1984). See also Patil (1984).
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An SDE model for the growth of a single species may be written as
dN(t) = N(t)g(N(t)) dt + oN(t) dW (t) (2.4)

Here N(t) is population abundance (now in upper case to denote a stochas-
tic process) at time ¢, and g(N(t)) is the per unit abundance growth rate,
which in general may depend on the population abundance. Also, W(t) isa
standard Wiener process (W (t) ~ normal(0,); dW (¢) ~ normal(0, dt)) and
0 is a positive scale constant. The form of (2.4) arises from an assumption
that the per unit abundance growth rate, g(N(t)), is perturbed by unpre-
dictable environmental factors. Mathematically, the differential dV (¢) is
defined in terms of an Ito or a Stratonovich stochastic integral (e.g., Karlin
and Taylor, 1981, p. 346). The quantity N(t) becomes a diffusion process,
a type of Markov process having continuous sample paths with probability
one. Two functions, the infinitesimal mean and the infinitesimal variance,
characterize most of the statistical properties of a diffusion process. They
are defined respectively by

my(n) = Jim %E[AN | N(t) = ] (2.5)
v () = lim ~E[(AN)? | N(t) = n] (2.6)

where AN = N(t + h) — N(t). A standard result is that the infinitesimal
mean and variance of the process N(t) defined by the SDE (2.4) are

my(n) = ng(n) + wn (2.7)

vy(n) = o?n? (2.8)

Here w is an indicator variable which depends on the type of stochastic
integral being used to define the SDE (2.4): w = 0 if the Ito integral is
used, and w = 02/2 if the Stratonovich integral is used.

Whether the Ito or Stratonovich integral is appropriate depends on the
interpretation of (2.4) as an approximation to some underlying stochastic
process. If (2.4) is seen as an approximation to a stochastic difference
equation with uncorrelated noise, then the Ito interpretation should be
used. If, however, N(t) is viewed as an approximation to some process
produced by integrating along a sample path of a smooth Gaussian process,
then the Stratonovich interpretation of (2.4) should apply. These points
are developed further by Ricciardi (1977), Karlin and Taylor (1981), and
Horsthemke and Lefever (1984).

The fact that the Ito and Stratonovich interpretations of (2.4) pro-
duce different quantitative predictions has caused some consternation in
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the ecological literature (Feldman and Roughgarden, 1975; Turelli, 1977).
The controversy has diminished in more recent years, as ecological mod-
elers now do not take SDEs of form (2.4) too literally, but merely regard
the SDEs as mathematically convenient approximations to more detailed,
underlying processes. We show below that two SDE models producing log-
normal distributions have qualitatively similar predictions under the Ito
and Stratonovich interpretations, and that any differences are easily sorted
out using weighted distributions.

One of the most useful features of diffusion processes is the transfor-
mation property. If N(t) is a diffusion process, then X(t) = h(N(t)) is
also a diffusion process, provided h is a continuous, strictly increasing (de-
creasing) function. The infinitesimal mean and variance of X (t) are given

by

mx(e) = 2Ry (o), (29)
vx(z) = vy () 1) (2.10)

(if o’ and A" are uniformly continuous functions) with n = h~!(z) (Karlin
and Taylor, 1981, p. 173). This property often permits the transformation
of a novel diffusion process into a known process with well-studied statistical
properties.

2.3 Stochastic Exponential Growth Model

MacArthur’s intuitive model can be recast in statistical terms as an SDE
of the form (2.4) with a constant per unit abundance growth rate:

dN(t) = rN(t)dt + oN(t) dW (¢) (2.11)

The Stratonovich version of this model was extensively analyzed by Capo-
celli and Ricciardi (1974) (see also Tuckwell, 1974). A discrete time stochas-
tic version of the exponential growth model was studied by Lewontin and
Cohen (1969), and is essentially recaptured in the Ito version of (2.11).
The differences in the Ito and Stratonovich versions were studied by Gray
and Caughey (1965), Feldman and Roughgarden (1975), Ricciardi (1977),
and Braumann (1983). The main properties of the model are found us-
ing the transformation X (t) = log N(t) and the formulas (2.9) and (2.10),
producing
o?

my(z) =r+w-— 3 (2.12)

2

vy(z) =0 (2.13)
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These are the infinitesimal moments of a Wiener process with drift. A
well-known result (e.g. Ricciardi, 1977, p. 58) gives a normal transition
distribution for X (¢):

2
X(t) ~ normal (zo - (r +w— %) t ozt) (2.19)

Equivalently, the distribution of N (t) becomes lognormal:

2
N(t) ~ lognormal (log ng+ (r +w— %) t,ozt> (2.15)

It is interesting to compare various measures of central tendency with
the deterministic solution of the ODE dn(t)/dt = rn(t) given by

n(t) = nye™ (2.16)

The mean, geometric mean, and harmonic mean of N (t) are, respectively,

E[N(t)] = nyelrte)t (2.17)
exp {E[log N(t)]} = ngel"tw=(*/2)t (2.18)
1/E[1/N(t)] = ngelrtw—o™)t (2.19)

The expectations are conditioned on N(0) = n,. Also, the median and
mode of the distribution of N(t) are found to be

median(N (t)) = ngel™tw=(e*/2)lt (2.20)
mode(N(t)) = nyelr+w=(3*/2)t (2.21)

For smaller values of r, some of the central tendency measures increase
exponentially while others decay to zero. In fact, if r < (62/2) — w, the

probability that N(t) is arbitrarily close to zero approaches 1 as ¢t becomes
large:

P[0 < N(t) < €] = P[00 < X(t) < loge]

— Pl oo < X —EIX@®)] _loge— BIX(5)]|
_P{ < [va.r(X(t))]l/2 = [V&I(X(t))]l/z} 1 (2.22)

as t — oo, since the last expression is the probability that a standard
normal random variable is less than or equal to [log e — z,]/(ov/Z) — [r+w—
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(62/2)]v/t/o, which increases without limit as ¢ increases. A similar result
was described by Lewontin and Cohen (1969) for a discrete time process,
and by Capocelli and Ricciardi (1974) for the Stratonovich version of this
model.

Note that in the above central tendency measures, the geometric mean
equals the median, which is a general property of the lognormal distribution.
Also, the deterministic trajectory (2.16) equals the arithmetic mean for the
Ito version, while for the Stratonovich version the deterministic trajectory
equals the geometric mean. This point was stressed by Braumann (1983)
in asserting that a main practical difference in the Ito and Stratonovich
versions is the semantic interpretation of (2.16) as a mean. In fact, a
cascade of interrelationships between the central tendency measures of the
two versions exists (Dennis and Patil, 1984). Let N;(t) and Ng(t) denote,
respectively, the Ito and Stratonovich versions of N(t). Then,

E[N,(t)] = exp {E[log Ns(t))} = nt)  (2:23)
exp {Ellog N;(1)]} = 1/B[1/N(t) (2.24)
1/E[1/N,(t)] = mode(N(t)) (2.25)

More generally, the generalized means of the Ito and Stratonovich ver-
sions are related. The fth moment about the origin of N(t) is

E[(N(t))?] = nelrtw=o?/210t+(c%/2)6% (2.26)
The generalized mean of N(t) is then:

{E[(N(t))o]}l/o - noe[r+w+(0—1)(a’/2)]t (2_27)

The Ito-Stratonovich interrelationship becomes

{EIN;(0)1}° = {BI(Ns ()1 O (2.28)

These interrelationships are derived from a general property of the ex-
ponential growth SDE: the Stratonovich transition lognormal distribution
is a weighted Ito transition lognormal distribution. The statistical concept
of weighted distributions was defined by Rao (1965) and has been investi-
gated by Patil and Ord (1976), Patil and Rao (1977, 1978) and Mahfoud
and Patil (1982). As pointed out by Dennis and Patil (1984), the Ito and
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Stratonovich lognormal transition pdfs are related by

n'/2f)(n,t | no)

Falmt I me) =T el

(2.29)
We will further point out here that the Stratonovich pdf can be obtained in

this model as a scale-transformed Ito pdf. It is a property of the lognormal
distribution that

nf f(n)
E[NF]

= e f(e *Pn) (2.30)

where f(n) is the pdf of a lognormal (i, )) random variable, N. Thus,
letting 8 = 1/2, the Stratonovich pdf can be obtained from the Ito pdf
through the scale transformation Ng(t) = exp(02t/2) N, (t).

2.4 Stochastic Gompertz Growth Model

The stochastic growth model given by the SDE (2.11) could not be used
indefinitely to represent a population’s abundance. An increasing popula-
tion would eventually encounter limits on nutrient supply, space, or other
resources necessary for growth. This situation is frequently modeled in
ecology with an ODE of the form

dn(t)
dt

= n(t)g(n(t)) (2.31)

(e.g. Freedman, 1980), where g(n(t)) is assumed to be a decreasing function
of n(t) with the following properties:

g(r)=0 (2.32)
for some 7 such that 0 < 7 < oo, and

J'(r) <0 (2.33)
Population abundance for such models increases (or decreases) from n, to

the stable equilibrium value given by 7.
One particular form of (2.31) is the Gompertz growth model:

dn(t) i
5 = an(t) log [m] (2.34)
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This ODE integrates readily to
= "] —at
n(t) = exp {logn + [log T] e } (2.35)
i

This growth trajectory is a sigmoid curve with an inflection point at 72/e.

Such models can often be approximated quite well by the logistic
growth model. The procedure approximates g(n) with a linear function
using a Taylor series expansion around 7 (Dennis and Patil, 1984):

dn(t) r ‘
o = n(t) [r - %n(t)] (2.36)
Here r = —ng'(%). For the Gompertz model, the logistic approximation has

r = a. This approximation has a trajectory that starts at n,, and levels off
at 7 (like the Gompertz), but the inflection point occurs at /2.

Stochastic versions of such models can be built as SDEs of the form
(2.4). In the resulting stochastic models, population abundance does not
level off at a stable equilibrium. Rather, the distribution for N(t) may
approach a limiting stationary distribution that is independent of the initial
conditions as well as ¢. The stationary distribution, when it exists, has the
following pdf (see Dennis and Patil, 1984):

f(n) =¢exp{%/2%&)—dn—2 (1 - %) logn} (2.37)

The constant 1) is evaluated by setting the area under f(n) equal to one.

This stationary pdf is a member of the log-exponential family of pdfs
defined by Patil and Ord (1976). A feature of this family is the “form-
invariance” property: the size-biased version always retains the same form
as the original pdf. Patil and Rao (1978) provide a general discussion of
the properties of size-biased distributions.

One implication of this property is that the Ito and Stratonovich ver-
sions of the SDE (2.4) have stationary distributions of the same form (Den-
nis and Patil, 1984). From (2.37), the Stratonovich stationary pdf is found
to be a size-biased Ito stationary pdf:

fs(n) = % (2.38)

Thus, if the Ito version of (2.4) predicted a certain type of stationary dis-
tribution, such as a lognormal or a gamma, then the Stratonovich version
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would predict the same type (provided both pdfs exist). An immediate
consequence of this relationship (2.38) is that the harmonic mean of the
stationary Stratonovich pdf is the mean of the stationary Ito pdf:

1/E[1/Ns) = EN,] (2:39)

The stochastic version of the Gompertz model is in the form (2.4),
with g(N(t)) = alog[i/N(t)]. The stationary pdf is found from (2.37) to
be that of a lognormal random variable:

N(o0) ~ lognormal <log n— (2.40)

[(e?/2) — w] ﬁ)

a ’ 2a

This result considerably extends the conceptual use of the lognor-
mal in ecology as a population growth model. The lognormal under the
MacArthur-type scenarios was strictly a time-dependent, transient model
for a population in the early phase of its growth. By contrast, the lognormal
(2.40) is a model for a population fluctuating around a stable equilibrium
value.

A stochastic version of the logistic model (2.36) takes the form (2.9),
with g(N(t)) = r — (r/R)N(t). The stationary distribution is a gamma
distribution with the following pdf:

aﬁ B—1_—an
f(n) = Tﬂ)n e (2.41)

where o = 2r/(0?7) and B = 2r/0? — 1+ 2w/0?. If B > 1, the gamma
has roughly the same shape as the lognormal: unimodal and right-skewed.
In many practical instances, ecologists would not be able to distinguish
between the lognormal and the gamma on the basis of fit to a given data
set. Just as the logistic (2.36) is an approximation to growth models with
a stable equilibrium, the gamma can serve as an approximation to the sta-
tionary distributions of stochastic growth models of the form (2.4). Dennis
and Patil (1984) provide further discussion of the ecological role of the
gamma as an abundance model.

The stochastic Gompertz model has the convenient feature that the
complete transition pdf can be obtained (Ricciardi, 1977). The transfor-
mation X (t) = log N(t) yields, with the help of formulas (2.9) and (2.10)
a diffusion process with infinitesimal moments given by

b

2
mx(z) = alogn — %+w—az vy (z) = o? (2.42)
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These are the infinitesimal moments of the well-known Ornstein-Uhlenbeck
process (e.g. Karlin and Taylor, 1981, p. 170). The transition distribution
for X(t) is normal:

X (t) ~ normal(u(t),A(t)) (2.43)
where
2
2) —
p(t) = logn (0°/2) —w
a
2 =
+ {log ng — logf + e y2) w} P (2.44)
Aft)= ”—2(1 — e~ 2ot) (2.45)
2a '
Thus, the transition distribution of N(t) is lognormal:
N(t) ~ lognormal(u(t), A(t)) (2.46)

We have here a time-dependent lognormal distribution that could represent
a population’s abundance for large values of ¢ as well as small values. The
limiting stationary distribution (2.40) is recovered from (2.46) as t — oo.

Various time-dependent measures of central tendency can be written
down:

(BN (@)°)}° = err+or@)2 (2.47)

mode(N (t)) = e#t)=2(*) (2.48)

The arithmetic mean, geometric mean (= median), and harmonic mean are
found from (2.47) by setting § = 1, 0, and —1, respectively. In particular,
the geometric mean of N(t) for the Stratonovich version of the Gompertz
SDE equals the deterministic growth trajectory given by (2.35).

The relationship between the Ito and Stratonovich versions of the
stochastic Gompertz model is manifested in terms of a weighted distri-
bution, as was the case for the stochastic exponential growth model. A
property of the lognormal distribution relates the lognormal random vari-
able N with its S-weighted version N, - Specifically, if

N ~ lognormal(y, A) (2.49)



316 Dennis and Patil

with pdf f(n), and if Nj has a pdf given by

nff(n)
then
Ng ~ lognormal(y + 8, A) (2.51)

This B-weighted lognormal is also the distribution of a scale transforma-
tion of the original random variable given by exp(BA)N (see (2.30)). The
property (2.51) is related to the variance-invariance characterization the-
orem of the lognormal due to Mahfoud and Patil (1982): N is lognormal
iff Var(log N) = Var(log Ny) for all 8 > 0. From (2.44), we find that the
means of the log-transformed Ito and Stratonovich variables are related by

2

ps(t) = mp(t) + 2-(1 - e*) (2.52)

where u;(t) = E[log N;(t)], etc. Thus, the Stratonovich and Ito lognormal
distributions share precisely the weighted relationship (2.50), where 8 is a
function of time. Specifically,

nPO f)(n,t | ng)

Ts(mt I no) = “Zry @y

(2.53)

where

Bt) = T-(1—e")/A(1) (254

As t becomes large, the relationship (2.53) of the transition pdfs approaches
the stationary size-biased relationship (2.38), since 4(t) — 1.

3. SPECIES FREQUENCY MODELS
3.1 Fisher’s Logseries Models

A pivotal, three-part paper by Fisher, Corbet, and Williams (1943)
launched four decades of ecological research on quantitative patterns of



Applications in Ecology 317

species abundance. Though it was not used by Fisher et al., the lognor-
mal distribution has been one of the main tools used by ecologists in this
research.

C. B. Williams had been studying samples of moths from Great Britain,
and A. S. Corbet had been studying butterfly samples from Malaya. Many
species were represented in the samples. Corbet and Williams noted that
any particular sample usually had a large number of species represented
by only a single individual apiece, while a less number of species were
represented by two individuals, even less by three individuals, and so on.
Corbet had observed that these species frequencies appeared to follow a
harmonic series pattern: if N was the number of species with one individual
in the sample, then N/2 was approximately the number of species with
two individuals, N/3 was approximately the number of species with three
individuals, and so on. Unfortunately, this mathematical model had the
inconvenient property that it diverged: the sum given by N(1+ % + % +...),
if continued indefinitely, would predict an infinite number of species in the
sample.

R. A. Fisher proposed a modification of the model. Fisher supposed
that the expected numbers of species in the sample might be proportional
to the terms of a negative binomial distribution. Upon analyzing the data
of Corbet and Williams, Fisher found that the estimated values of the
parameter k in the negative binomial were invariably small, usually quite
close to zero. Fisher reduced the number of parameters in the model by
taking the limit £ — 0, s — oo in such a way that

sk — «a (3.1)

in the negative binomial model. The quantity s is the proportionality con-
stant in the negative binomial terms, representing the number of species
in the ecological community being sampled (we must note that the limit
(3.1) never explicitly appears in Fisher’s discussion (Fisher et al., 1943),
but rather is more or less implied). The result was that the expected num-
ber of species with r individuals in the sample, m,, became proportional
to the terms of a logseries distribution:

.
m, = arq r=1,2,3,... (3.2)

where a >0and 0 < g < 1.
The logseries distribution has been used extensively since Fisher et
al. (1943) to describe species frequencies, most notably by C. B. Williams
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(1964) and R. A. Kempton (Kempton and Taylor, 1974, 1979; Kempton,
1975; Taylor et al., 1976).

3.2 Preston’s Lognormal Model

F. W. Preston published an influential objection to the logseries model a
few years after the Fisher et al. paper appeared (Preston, 1948). Preston
worked with data sets on bird communities as well as moth communities,
including some of Williams’ data. Preston grouped the data into logarith-
mic abundance intervals which he called “octaves”: the number of species
with 1-2 individuals in the samples, with 2-4 individuals, with 4-8 indi-
viduals, etc., were displayed as a frequency histogram. Preston observed
that the histograms, when drawn on such a logarithmic scale, tended to
have modes, and in fact, tended to look quite Gaussian. Preston fitted
a (left-truncated) normal curve to the histograms, which seemed to de-
scribe the data sets very well. Since Preston’s paper, the normal curve has
been widely used to “graduate,” in Preston’s words, species frequency data
grouped into logarithmic abundance intervals (see reviews by Whittaker,
1972, and May, 1975).

3.3 Sampling Considerations

These applications of the lognormal as a species frequency model have un-
fortunately been marred by a lack of statistical rigor. Preston and subse-
quent investigators in many cases fit the Gaussian curves to the histograms
by eye. Later, ecologists employed nonlinear regression routines to find
the least-squares fits of the Gaussian curves to the histograms (Gauch and
Chase, 1974). Such procedures ignore any probabilistic content of the Gaus-
sian curve, ignore the intrinsically discrete nature of the data, and ignore
sampling mechanisms. Lacking an explicit likelihood function, the ecolo-
gists are unable to provide valid confidence intervals for the parameters,
test for goodness of fit, or tests for differences between samples.

Statisticians, in fact, have been unable to agree on the appropriate
sampling model to use in conjunction with either the logseries or the log-
normal models (see, for instance, Rao, 1971; Watterson, 1974; Kempton,
1975; Engen, 1979; Lo and Wani, 1983). It is unclear whether Fisher orig-
inally had an explicit sampling model in mind for the logseries. It is the
authors’ opinion that Kempton’s (1975) sampling model is likely to find
the widest use in species frequency studies, though more statistical and
ecological research on this question certainly remains to be done. We will
briefly describe Kempton’s sampling model here, with attention to the role
of the lognormal distribution in this approach.
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Let N, be the number of species with r representatives in the sample,
r=1,2,3,.... The numbers N;, N,, ..., are assumed to be independent,
but not identically distributed, Poisson random variables. The total number
of species in the sample is assumed to be a Poisson random variable with
mean s. Also, the number of individuals in the sample of a particular
species is assumed to be a Poisson random variable with mean A. The
values of A differ among species; it is assumed that the A values arise from
a continuous distribution on the positive real line with pdf f(A). The result
of these assumptions is that

E[N]=m, =s / e_:!’\r F(A) dA (3.3)

The pdf f(A) would typically be that of either a lognormal or a gamma
distribution. Thus, the observed species frequencies, n,, n,, ..., are re-
alized values of independent Poisson variables, N;, N,, ..., whose means,
my, My, ..., contain a common set of unknown parameters. The unknown
parameters are found in (3.3) and consist of s plus the parameters in the
pdf £(}).

If the A values arise from a lognormal (u,0?) pdf, then

m,(s,n,0%) = r!(aggw / A" exp[—X — (log A — )2 /(207)]dX (3.4)

In other words, the expected values m, are proportional to the terms of
a discrete Poisson-lognormal distribution (Holgate, 1969; Bulmer, 1974;
Kempton and Taylor, 1974; Shaban, this volume). For the gamma model,
with f(A) = [B¥/T(k)]A\¥=1e=P*, the m, values are proportional to the
terms of a negative binomial distribution:

mr(s,kaﬂ) = s(k T : N 1) qrpk (3'5)

where ¢ = 1 — p = 1/(1 + B). Taking Fisher’s limit s — oo, £ — 0, and
sk — a here produces the logseries:

(3.6)
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Let the unknown parameters be denoted by the vector 8. The likeli-
hood function becomes the product of Poisson probabilities:

1(6) = ] Rl (@i, O)]"

n.!
r=1 r

(3.7)

With product-Poisson sampling, iteratively reweighted least squares could
be used for calculating maximum likelihood estimates (Jennrich and Moore,
1975). Using the lognormal model, though, requires an additional routine

for numerical integration in order to evaluate the Poisson-lognormal terms
(3.4).

3.4 Preston’s Canonical Hypothesis

Preston (1962) noticed a curious pattern in his lognormal curves of species
frequencies. The pattern formed the basis of “Preston’s Canonical Hypoth-
esis” of species abundance. The Canonical Hypothesis (CH) essentially
states that the species frequency curves observed in nature will be predom-
inantly lognormal, and that the parameter values observed will be found
only in a small, constrained region of the parameter space. The CH has
attracted considerable attention in the ecological literature (see May, 1975).

Specifically, the CH consists of a lognormal distribution with the fol-
lowing structure. We must first define the so-called individuals curve. If
f(}) is the species abundance pdf in (3.3), then the expected number of
species with abundances greater than A would be

s/f(u) du (3.8)
A

It would follow that the expected total abundance of all those species with
abundance greater than A would be

s/uf(u) du (3.9)
A

Because of (3.8) and (3.9), sf() is called the species curve, and sAf(})
is called the individuals curve. In economics, if f (A) represents a distribu-
tion of wealth among individuals, then (3.8) is the number of individuals
with wealth greater than A, and (3.9) is the total amount of wealth these
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individuals have cornered. On a logarithmic scale, with 7 = log A, these
curves become se” f(e”) and se?" f(e”), respectively. When f()) is a log-
normal pdf, these logarithmic species and individuals curves are of course
Gaussian.

Preston found, through examining many of his logarithmic histogram
diagrams, that the mode of the logarithmic individuals curve tended to fall
in the octave of the largest species. In other words, a randomly picked
individual (dollar) would most likely come from the logarithmically largest
species (wealthiest individual), rather than from, say, a group of species
with intermediate logarithmic abundance (middle class). This pattern oc-
cured repeatedly in Preston’s eye-fitted curves, leading Preston to propose a
“canonical” lognormal distribution in which the parameters are constrained
so as to fix this mode = max relationship.

Ecologists, judging from their literature, have practically come to re-
gard the CH as an established empirical law of nature. Sugihara (1980),
for instance, states: “Few propositions in ecology have as much empirical
support as Preston’s (1962) canonical hypothesis of species abundance.”
Sugihara goes on to propose a refinement of the lognormal sequential break-
age model (see Aitchison and Brown, 1957; Pielou, 1975) which produces
a canonical lognormal distribution: the pieces being broken are niches in
a multidimensional niche space, and a breakage corresponds to the evolu-
tionary splitting of a species or a successful invasion of a niche occupied
by another species. Preston himself regards departures from the canonical
lognormal distribution as indicative of defective, nonrandom sampling, of
sampling heterogeneous ecological communities, or of sampling overpacked
communities with more species than niches (Preston, 1980).

The enthusiasm ecologists have for this hypothesis must be judged from
a statistical standpoint as premature. The studies supporting the CH are
based on data sets analyzed with dubious parameter estimation methods
having no known statistical validity. By contrast, Kempton’s extensive
analyses of British moth communities incorporated the explicit sampling
model and likelihood function described earlier. These studies reported no
evidence that the canonical lognormal is the best fitting distribution; in
fact, the logseries model tended to outperform the full lognormal model for
many of the moth collections (Kempton and Taylor, 1974; Taylor et al.,
1976).

3.5 Statistics of Preston’s Canonical Hypothesis

Patil and Taillie (1979a) have defined the CH in statistically precise terms.
Their work provides formal statistical hypotheses concerning the CH that
potentially could be tested for any data set on species frequencies.
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Patil and Taillie define the predicted abundance of the largest species
as

] 1
Amax = F (s T 1) (3.10)

where F'() = 1—F()), and F is the cumulative distribution function given
by

A
F(\) = / Plujidu (3.11)

The idea arises from the fact that E[F(A,,,)] = 1/(s+1), where A . is the
largest observation from a random sample of size s from f (A). Then A,
is a convenient, tractable approximation to E[A,,,]. The mode, 7 of the
logarithmic individuals curve is found by setting d log[se?" f(e7)]/dr = O.
The CH is then formally stated by Patil and Taillie as log A, &7, or

F”( . )ze* (3.12)
1+s

Using a lognormal (i, 0?) pdf for f()), the CH becomes

[6—1 (sil)r ~o? (3.13)

where @ is the right tail of a standard normal distribution. This statement
of the CH amounts to a constraint on the parameters s and o2. If s is large,
as is the case for most species abundance studies, then

2log s — loglog s — log(47) ~ o (3.14)

provides a very good approximation to the relationship (3.13).

Patil and Taillie further point out that other distributions besides the
lognormal could be used for f(A) in the CH (3.12). For instance, the gamma
model with f(A) = [8%/T'(k)]A*~1e=PX yields the following version of the
CH:

(3.15)
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Here T'(k, z) is the incomplete gamma function defined by

[o/e]

T(k,z) = /tk_le_t dt (3.16)

z

Thus, the CH for the gamma implies a constraint between the parameters
s and k.

The parameters k in the gamma and o? in the lognormal are related
to the degree of evenness of the species abundances. The coefficient of
variation in the gamma is 1/v/k, while in the lognormal it is [exp () —1]%/2.
Large k, or small 2, corresponds to a small coefficient of variation in the
species abundances. The species would tend to have similar A values under
such circumstances, resulting in greater evenness of the abundances in the
community. Taillie (1979) and Patil and Taillie (1979b) have formalized this
notion of evenness in species curves using the concept of Lorenz ordering
from economics. They have shown that k and 0% completely determine the
Lorenz ordering for the gamma and lognormal models.

The CH constraints (3.13) and (3.15), as pointed out by Patil and
Taillie (1979a), imply an inverse relationship exists between species richness
and evenness in an ecological community. For the gamma model, in fact,
the relationship (3.15) between k and s is well-approximated by

sk ~ 4.56 (3.17)

for large s and small k. This is found by dividing both sides of (3.15) by k,
taking the limit s — oo, k — 0, sk — ¢, and then numerically evaluating
the integral. So Preston’s CH applied to the gamma model turns out to be
a special case (o =2 4.56) of Fisher’s limiting logseries!

A type of limiting lognormal model can be derived using the CH, in
analogy with the logseries as a limiting form of the gamma model. The
CH constraint (3.13) is approximately a linear relationship between ¢ and
s for large s : 0 &~ a + bs. In the Poisson-lognormal model (3.4) for species
frequencies, one can substitute ¢ = a + bs and take the limit as s — oo,
producing

lim m,(s,p, (a + bs)?) = 2 (3.18)

8—00 '

for r = 1,2,..., with 4 = 1/[b(27)1/2]. In a sense, we have come full circle
in recovering Corbet’s original harmonic series model for species frequencies
as a limiting lognormal model. We point out that Patil and Taillie (1979a)
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studied a somewhat different divergent series as a limiting lognormal model
obtained using a different limiting scheme.

The topic of species frequency distributions, from an ecological stand-
point, would now benefit from some large-scale, serious data analysis. There
is presently no reason to draw any more sweeping conclusions based on
makeshift estimation techniques and eyeball testing. Claims concerning
which distributions fit best, changes in distributions or parameters follow-
ing ecological disturbance, or the CH should now be rigorously examined
through careful attention to appropriate statistical modeling of sampling
procedures. It is exciting to contemplate what patterns in nature remain to
be discovered through a healthy injection of statistical thinking into species
abundance studies.

4. MODIFIED LOGNORMAL MODELS AS DESCRIPTIVE
ABUNDANCE MODELS

The lognormal is commonly used in ecology in a purely descriptive role as
a model of abundance of a single species present in different samples. If
many samples are taken across time or space, the abundance of a species
typically varies greatly from sample to sample. The lognormal is used to
describe these abundances mostly for convenience. Parameter estimates for
the lognormal are easy to compute; and, an added attraction for ecologists
is the theoretical underpinning of the lognormal as a single species growth
model. (Section 2).

However, ecological data are frequently not so cooperative. Ecologi-
cal studies can contain complicated factors, and the lognormal distribution
often requires some modification for use as a descriptive model of abun-
dance. We will not dwell here on reviewing standard descriptive uses of
the lognormal in ecology. Rather, we will mention here a few of the typical
modifications to the lognormal that are in use.

4.1 Poisson-Lognormal

When plankton are sampled using replicated net hauls or other methods,
the frequency distribution of sampled abundances tends to be a unimodal,
right-skewed distribution resembling a lognormal (Barnes and Marshall,
1951; Barnes, 1952). However, plankton samples are typically count data,
representing numbers of particles suspended in a unit volume of water. A
given sample could be assumed to have a Poisson distribution with mean
parameter A. Additional between-sample variability could then be induced
by a mixing distribution with pdf f(}). The plankton count distribution is
Poisson-lognormal if the mixing distribution is lognormal. The probabilities
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would then be

oo
1

PIX =2 = s / X"l exp[—A — (log A — 1)?/(20%)] dA  (4.1)

where X is the number of particles in a unit volume of water. This distri-
bution was discussed earlier in the entirely different context of species fre-
quency models. Cassie (1962) gives an extensive discussion of the Poisson-
lognormal as a plankton abundance model, with particular attention to its
differences from the negative binomial. Further statistical properties and
applications as a plankton model are developed by Reid (1981). Read-
ers are also referred to the article in this volume by S. A. Shaban on the
Poisson-lognormal distribution.

4.2 Delta-Lognormal

Data from surveys on abundances of marine organisms, including plankton,
often contain a large proportion of zeros. The lognormal distribution typi-
cally provides a reasonable description of abundances for samples in which
organisms are present. The spatial distribution of marine organisms tends
to be patchy, though; samples are drawn from a mosaic of areas where
organisms are present and areas where organisms are absent. When the
objective of such surveys is to estimate mean abundance, there are advan-
tages to using a modified lognormal distribution with an added discrete
probability mass at zero (Pennington, 1983). Such a distribution is called
a delta-distribution by Aitchison and Brown (1957) and a delta-lognormal
distribution by K. Shimizu in Chapter Two of the present volume. The
delta-lognormal has “pdf” given by

9(2) = ab(z) + (1 — ) f(2) (4.2)

where f(z) is a lognormal pdf, and 6(z) is the Dirac delta function defined
by

b

/6(z)d:c={1 el (4.3)

< 0 otherwise

and 0 < a < 1. Estimation for distributions of the general form (4.2) was
studied by Aitchison (1955).
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The purpose of the marine abundance surveys often is to estimate
E[X] = k, which for the delta-lognormal becomes

k= E[X] = (1 — a)ert(@*/2) (4.4)

Suppose a random sample of size n drawn from the delta-lognormal has
m nonzero values, and suppose § and s2 are the sample mean and sample
variance, respectively, of the log-transformed nonzero values in the sam-
ple. One unbiased estimate of k is of course the ordinary sample mean of
the observations, zeros and all. However, §, s?, and m/n are joint com-
plete sufficient statistics for u, 0%, and «, and this fact can be exploited to
produce a much better estimate. Aitchison (1955) obtained the minimum
variance unbiased estimate of «; Pennington (1983) obtained the MVUE
for the variance of the estimate and applied the results to fish and plank-
ton survey data. Pennington noted that the MVUE for « is considerably
more efficient than the ordinary sample mean under the high variability
conditions encountered in marine abundance surveys. These results and
generalizations are contained in Section 3.1 of Chapter Two of the present
volume.

We might remark here that it would be useful to study the addition
of extra zeros to the Poisson-lognormal, in connection with marine surveys
involving count data.

4.3 Delta-Compound-Lognormal

When terrestial plant communities are sampled with quadrats, the data
often consist of large proportions of quadrats with'no plants, and continu-
ous, right-skewed distributions of plant abundances among quadrats where
plants are present. Plant abundance in such studies is typically measured
in terms of cover. The situation is more difficult than the preceding marine
surveys in which the delta-lognormal could be used, for two reasons: (a)
Plant cover present in a quadrat arises from a random number of initial
propagules (seeds, rhizomes, etc.). (b) Plant cover typically grows as a
function of time.

Steinhorst et al. (1985) proposed distribution models to describe plant
cover development in forest communities following clearcutting and burn-
ing. The models consist of a randomly stopped sum of continuous iid ran-
dom variables, plus an additional probability mass at zero. Such a model
would have a Laplace-Stieltjes transform given by

¢y(s) = e+ (1—a)py(-logx(s)) (4.5)
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where Y is the total cover on a quadrat, N is the number of initial propag-
ules on the quadrat (a discrete random variable on the non-negative in-
tegers), X is the size attained by a plant at the time of sampling, and
$x(s) = Ele=*X], ¢ (s) = E[e=*N], ¢y (s) = E[e=*Y]. The parameters in
the distribution of X were assumed to be functions of time such that E [X]
would follow a growth law like the logistic. Steinhorst et al. consider models
in which N is either Poisson or negative binomial, and X is either gamma, or
normal. They were able to compute maximum likelihood estimates for data,
sets on various species of shrubs. The estimates were computed using the
EM algorithm for those species which grow from rhizomes, since N is then
an unobservable variable (“individual” plants not being distinguishable).

While Steinhorst et al. (1985) did not explicitly discuss using the log-
normal as a distribution model for X, they have now investigated its use
and are studying statistical inference problems for models in the form (4.5)
in more generality (Steinhorst, manuscript in preparation). The lognormal
would seem to be a promising candidate for modeling the size attained by
a plant at a given time. The stochastic Gompertz model (see Section 2.4),
for instance, would provide an explicit lognormal model with a mean that
evolves according to a well-known growth law. The lognormal, however,
does not have a convenient Laplace-Stieltjes transform, and so writing the
model in the form (4.5) may not be very useful.
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