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Abstract.  We develop a stochastic model for the abundance of adult populations of
the flour beetle Tribolium. The model is in the form of a stochastic differential equation
containing adult recruitment and mortality rates perturbed by multiplicative noise. A
deterministic version of the model (an ordinary differential equation) predicts a fixed, stable
cquilibrium; by contrast, the stochastic model predicts a stationary probability distribution
for population size. The model can be approximated closely by a stochastic logistic equation
having agamma distribution as a stationary solution. We develop or clarify various practical
aspects of making statistical inferences for the resulting gamma abundance model, including
estimation of parameters, testing goodness of fit, obtaining confidence intervals for functions
of parameters, and testing to compare two gamma distributions. Analyses of 11 data sets
on Tribolium suggest that the gamma model deserves more widespread consideration as

an equilibrium abundance model for other species.
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INTRODUCTION

The empirical observation that populations do not
increase in abundance indefinitely prompted the Ver-
hulst-Pearl logistic equation to become a part of eco-
logical theory (Hutchinson 1978, Kingsland 1985). The
logistic model forecasts that a population eventually
reaches a fixed equilibrium abundance. Though this
prediction was an alternative to the Malthusian argu-
ment of indefinite increase, the logistic model was still
inadequate. Laboratory and field populations often did
not attain a fixed point equilibrium, but rather ap-
peared to fluctuate around some average value (Allee
et al. 1949:319, Andrewartha and Birch 1954:358).

Leslie (1962) was among the first to study such data
as a frequency distribution of abundances observed
when a population was fluctuating in the region of its
steady state. While Leslie’s particular model for the
flour beetle Tribolium did not describe the data very
well, his call to view population equilibrium as a sta-
tionary probability distribution has proven to be a very
useful idea (Leigh 1968, Goel and Richter-Dyn 1974,
Ludwig 1974, May 19744, Feldman and Roughgarden
1975, Ricciardi 1977, May et al. 1978, Roughgarden
1979, Costantino and Desharnais 1981, Nisbet and
Gurney 1982, Dennis and Patil 1984).

One such stationary probability distribution, the
gamma distribution, may have many applications as
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a model of single-species population abundance (Cos-
tantino and Desharnais 1981, Dennis and Patil 1984).
With just two parameters, the model is simple, yet it
is flexible enough to describe a variety of data sets. The
gamma is the stationary distribution arising from a
stochastic version of the logistic equation (Leigh 1968).
Just as the logistic equation is a mathematical approx-
imation to many population growth curves, the gamma
can be viewed as an approximate stationary solution
to the stochastic versions of those growth curves (Den-
nis and Patil 1984).

In this paper, we propose a role for the gamma dis-
tribution as the stochastic population equilibrium of
adult numbers in flour beetle populations. We show
that the gamma has underlying biological justification
as a population model, and we present a variety of
statistical methods for explicit testing of hypotheses
associated with the model. Our specific objectives in
this paper are twofold.

First, we develop the biological theory behind the
gamma model. In our theory, the deterministic “sig-
nal” is an ordinary differential equation for population
size based on adult recruitment and mortality rate
functions. The differential equation contains a fixed,
stable equilibrium population size; we clear up some
persisting confusion in the ecological literature on how
such models can be approximated by the logistic equa-
tion. However, the model by itself does not account
for the large amount of variation present in replicate
flour beetle populations. We therefore incorporate sto-
chastic *“noise” into the model, arguing that the noise
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should be scaled by a function proportional to popu-
lation size. Such multiplicative noise obscures not only
the location of the fixed equilibrium, but even the use-
fulness of the equilibrium as a concept. Using the ap-
proximation technique of Dennis and Patil (1984), we
then approximate the stochastic flour beetle model with
a stochastic logistic equation, and derive the gamma
as the stationary distribution for population size. This
stochastic differential equation model has many emer-
gent and biologically important properties that are con-
siderably different from the deterministic version.

Second, we develop or clarify various practical as-
pects of making statistical inferences for the gamma
model from population data sets, including estimation
of parameters, testing goodness of fit, obtaining con-
fidence intervals for parameters, and testing to com-
pare two gamma distributions. We advocate using a
multinomial likelihood function for the inferences, since
computing is easily accomplished with nonlinear least
squares packages, and since chi-square goodness-of-fit
tests are then valid. An assumption for this approach,
when applied to time series observations on one pop-
ulation, is that the observations are far enough apart
for autocorrelation to be small. We discuss some effects
of the violation of this assumption on parameter es-
timation and goodness-of-fit testing; this multinomial
approach appears to have some robust qualities. We
illustrate the various statistical inferences using 11 data
sets on the flour beetle Tribolium.

The results presented in this paper suggest that the
gamma deserves more widespread consideration as an
abundance model for other species. We regard the gam-
ma as a parsimonious, easy to use, and fully testable
hypothesis about single species population regulation.
By presenting these results, we hope that the gamma,
and the concept of stochastic equilibrium in general,
will become useful alternatives to the more familiar
notions of fixed equilibria, periodic oscillations due to
time lags and other factors, and deterministic chaos.

STATIONARY DISTRIBUTION MODELS
Deterministic flour beetle population models

Let X(¢) be a positive, real-valued, continuous func-
tion of time representing a population’s abundance at
time ¢. Ecologists traditionally have modeled changes
in population abundance, in the absence of other in-
teracting species, with an ordinary differential equation
(ODE) of the form

dx(n = X(glx@)] dt. o))

Here, dX(¢) represents an (approximate) increment in
population abundance during a small time interval from
ttot + dt, and g[X(¢)] is the per-unit-abundance growth
rate when the population has size X(¢). The function g
is typically a decreasing function, with a single, stable
equilibrium population size, X(c0), given by g[X(e0)] =
0. For many populations, Eq. 1 is somewhat simplistic
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in neglecting age classes (though see Livdahl and Su-
gihara [1984] for an example of how such simple dy-
namic behavior can emerge from complex natality and
mortality schedules). For flour beetles, however, such
an ODE can usefully represent some important features
in the dynamics of the adult age class.

In the species T. castaneum and T. confusum, an
important life stage interaction is the cannibalism of
pupae by adults. If we let C be the per capita rate at
which adults cannibalize pupae and we assume that
the adults act independently, then the proportion of
pupae that survive to adulthood is exp[— CX(?)], where
X(?) is the total number of adults. Coupling this den-
sity-dependent function together with the density-in-
dependent rates of pupal production, B, and adult mor-
tality, D, we have

dX(t) = X(t)[Be ¥ — D] dt (2)

as an ODE of the form of Eq. 1 for the incremental
change in adult numbers. The nonlinear recruitment
rate function X(¢)B exp[— CX(¢)] has appeared through-
out the Tribolium literature: Crombie (1946), Landahl
(19554, b), Rich (1956), Neyman et al. (1956), Taylor
(1965,1967, 1968, 1971), Lloyd (1968), and Sonleitner
(1977) are examples of its early use. Furthermore, the
population Eq. 2 has been discussed in fisheries biology
by Ricker (1954, 19754, b), Levin and Goodyear (1980),
and May (1980), and in general population theoretical
studies by Moran (1950), Ccoke (1965), May (19745,
1976), Smith (1968, 1974), and May and Oster (1976).

The dynamics of the deterministic model (Eq. 2) are
straightforward. If B > D, the equilibrium number of
adults given by X(c0) = [log(B/D)]/C is globally stable.
If B < D, then the population will go extinct. In the
neighborhood of X(c0), the rate of approach to equi-
librium is given by the eigenvalue A = D log(D/B).

The ordinary logistic model can serve as an approx-
imation for deterministic models, such as Eq. 1, with
a single stable equilibrium. The flour beetle model (Eq.
2) cannot be solved for X(¢) as an explicit function of
time; consequently, the model is difficult to use for
describing and analyzing data. The logistic becomes an
approximation to Eq. 1 by expanding the per capita
growth rate, g[X(?)], in a Taylor series around the stable
equilibrium X(o0), and discarding second-order or
higher terms:

glX (0] = glX(0)] + [X(2) — X(0)]g'[X(0)] + ...
~a— bX(), (3)

where a = — X(00)g'[X(0)], and b = — g'[X(20)]. Some
derivations of the logistic in the ecological literature
take the expansion around zero (e.g., Roughgarden 1979:
306), and thus produce an incorrect value for X(co).
Other derivations leave the expansion point unspeci-
fied (e.g., Lotka 1924, Pielou 1977, Hutchinson 1978);
this may have helped foster an undeserved reputation
for the logistic as a biologically vague model. For the
flour beetle model (Eq. 2), the logistic approximation
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produces a = D log(B/D) and b = CD. Note that X(c0)
in this logistic is not a vaguely defined “carrying ca-
pacity,” but rather an equilibrium balance of recruit-
ment, cannibalism, and mortality.

The logistic approximation is nearly indistinguish-
able from the flour beetle model for many parameter
values. The flour beetle model has an inflection point
occurring at a value of X(¢) < X(c0)/2, while the in-
flection point of the logistic occurs exactly at X(c0)/2.
Population growth data sets tend to be scattered and
seldom reveal such fine details of curvature. The lo-
gistic has only two parameters; in the authors’ expe-
rience, the third parameter in the flour beetle model
often causes estimation problems when fitting the mod-
el to scattered data sets.

Stochastic differential equations

We present evidence in this paper that a simple sto-
chastic extension of Eq. 1 offers substantial improve-
ment for describing real populations. The stochastic
version of Eq. 1 we consider is the following stochastic
differential equation (SDE):

dX(t) = X()glX ()] dt + o X(2) dW(). 4)

Here dW/(t) has a normal distribution with a mean of
zero and a variance of dt, and ¢ is a positive constant.
Computationally, the SDE indicates how the trajectory
of X(¢) might be simulated. For each small time interval
of length dt, one would generate a normal random
variable, dW(¢), independent of that of the previous
interval. The new population size at time ¢ + df would
be computed as X(¢) + dX(¢). Ecologically, the model
arises from adding “white noise” to g[X(¢)] to represent
the effects of unpredictable fluctuations in the per-unit-
abundance growth rate of the population. Mathemat-
ically, the differential dX(¢) is formally defined in terms
of either an Ito or a Stratonovich stochastic integral
(see Soong 1973, Karlin and Taylor 1981, or Horst-
hemke and Lefever 1984). We will use the Ito inter-
pretation of the SDE (Eq. 4), which corresponds to the
above-mentioned simulation method (e.g., Turelli
1977). The Stratonovich interpretation can be obtained
in what follows (and in the above simulation method)
by replacing g[X(¢)] with g[X(#)] + ¢%/2. Dennis and
Patil (1984) have shown that qualitative results about
the stationary distribution for the SDE (Eq. 4) are un-
affected by choice of Ito or Stratonovich interpretation.

If o = 0 in Eq. 4, the deterministic model (Eq. 1) is
recovered, and the trajectory of X(¢) levels off at the
stable equilibrium, X(o0). However, with ¢ > 0 the
probability distribution for X(¢) typically approaches
a limiting, stationary distribution as ¢ becomes large.
The stationary distribution has a probability density
function (pdf) of the form

fx) = Kexp{(Z/az)f[g(x)/x] dx — 2 log x},

0<Xx<oo,

(5)
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where K is a constant that is found by setting the area
under f{x) equal to 1. For some forms of g(x), the area
under f{x) is infinite, and a stationary distribution in
the form of Eq. 5 does not exist. (There may be a
degnerate stationary distribution at x = 0, implying
population extinction with probability 1.) When f{x)
is a legitimate pdf, the probability that X(co) would
take values below a certain population size, w, becomes
the area under f{x) between 0 and w. A rigorous math-
ematical derivation of Eq. 5 was presented by Tanaka
(1957). Books by May (1974a), Roughgarden (1979),
and Nisbet and Gurney (1982) also provide derivations
of Eq. 5. Though the mathematics underlying SDEs
such as Eq. 4 is formidable, many of the results are
easy to apply in practice. Note, for instance, that finding
the form of the stationary distribution (Eq. 5) for the
stochastic version of any particular growth model (Eq.
1) requires just two integrations: an indefinite integral

(antiderivative) given by f [g(x)/x] dx (with the in-

tegration constant simply absorbed into K), and a def-
inite integral to find the value of K. Furthermore, var-
ious statistical inferences concerning the stationary
distribution are easily performed with data using the
methods outlined in this paper.

Alternate SDE versions of deterministic models of
the form of Eq. 1 exist. The versions have a function
of X(¢), rather than X(¢) itself, as a scale multiplier of
dW(t). For instance, an SDE constructed as an ap-
proximation to a linear stochastic birth—death process
could have a noise term of o[ X(¢)]” dW(t) (Nisbet and
Gurney 1982:172). Or, an SDE approximation to a
stochastic difference equation with additive noise might
simply have sdW(¢). In the SDE literature, models with
adW(t) are said to have “additive noise,” while models
with ¢X(¢t) dW(¢) have “multiplicative noise” (e.g.,
Horsthemke and Lefever 1984:15).

The multiplicative noise term in Eq. 4 has advan-
tages for representing fluctuations in flour beetle pop-
ulations. First, notable fluctuations are present in large
as well as small flour beetle populations (e.g., Costan-
tino and Desharnais 1981). Demographic fluctuations,
as represented in linear birth—death models such as
those proposed by Desharnais and Costantino (1982),
or as represented in some SDE models with noise terms
scaled by [X(2)]”, typically become negligible for large
population sizes. Second, the stationary distributions
(Eq. 5) resulting from multiplicative noise are defined
for 0 < x < oo, a natural range for application to
populations. The multiplicative fluctuations vanish as
X(t) approaches zero, producing an unattainable “nat-
ural” or “‘entrance” boundary at X(¢) = 0 (Karlin and
Taylor [1981:226] provide an excellent guide to the
complicated topic of boundary classification). Additive
noise models, by contrast, usually lead to a range of
—00 < x < +00, and thus may require inconvenient
truncation at zero for population modeling.
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Stochastic flour beetle population models

The stochastic version of Eq. 2 in the form of Eq. 4
becomes

dX(t) = X@)[Be~<*» — D]l dt + oX(t) dW(t). (6)

The stationary distribution for X(<0) in this model has
a pdf of the form

AxX) = Kx~ 20w 2exp[—(2B/e)E(CX)),  (7)

with 0 < x < oo. This pdf exists (i.e., is integrable)
onlyif B — D > ¢%/2 (or B — D > 0 for the Stratonovich
version); otherwise the population becomes extinct with
probability 1. The function E, is the exponential-in-
tegral function, which can be expressed as an integral,
an infinite series, or an incomplete gamma function
(Abramowitz and Stegun 1965):

=)

E,(z)=fv*‘e"'dv

=—v —logz— 2 (—2)/[i((H] =IO, z). (8)

i=1

Here v represents Euler’s constant (=0.5772156649
...). The constant K cannot be written down explicitly,
but must be evaluated by numerical integration for
every set of values of B, C, D, and ¢* This feature
becomes somewhat troublesome when computing pa-
rameter estimates from data, since the estimation al-
gorithms require many iterations. The pdf (Eq. 7) has
a mode at (1/C){log(B/D) — log[l + (¢2/D)]}.

The gamma distribution arises as the stationary dis-
tribution to the stochastic version of the logistic model
(Leigh 1968). The logistic model takes g[X(¢)] in Eq. 1
to be a linear decreasing function of X(¢), and so the
stochastic version (Eq. 4) becomes

dX(t) = X(®la — bX(0)] dt + oX(t) dW (). (9)

Ast becomes large, the distribution for X(¢) approaches
a gamma distribution. Specifically, the pdf for X(c0),
given by Eq. 5, becomes

Sx) = [B/T()]xte s, (10)

where 0 < x < oo, @ = (2a/¢?) — 1, and B = 2b/¢>.
The parameters « and (8 are positive. (However, if 62 >
2a, then a < 0 under the Ito interpretation of the SDE
[Eq. 9], and the stationary distribution is no longer a
gamma. Instead, the stationary distribution is degen-
erate at x = 0.)

Just as the logistic model can approximate the de-
terministic flour beetle model, the logistic SDE (Eq. 9)
can approximate the flour beetle SDE (Eq. 6), and the
gamma distribution can be used to approximate the
stationary pdf (Eq. 7) of the flour beetle SDE (Dennis
and Patil 1984). One simply uses the linear approxi-
mation to g[X(?)], (Eq. 3), in the stochastic logistic
model (Eq. 9). The resulting stationary gamma distri-
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bution is in the form of Eq. 10, with o = [(2D/¢?)-
log(B/D)] — 1, 8 = 2CD/s*. The mode of the gamma
at (« — 1)/ = (1/C)[log(B/D) — ¢*/D] approximates
the location of the true mode when ¢2/D is small. The
gamma essentially captures the right-skewed, unimod-
al shape of the true pdf (Eq. 7). The right tail of Eq. 7
is heavier than that of the gamma, however; the un-
derlying convex shape of g[X(¢)] in Eq. 6 gives less
restoring force toward X(co) for large values of X(r)
than does the linearized version of g[X(¢)] in Eq. 9.

Emergent properties of SDE models

We cannot overemphasize the fact that SDE models
may display dynamic behavior considerably different
from their deterministic counterparts. The emergent
system properties of stochastic forces are particularly
marked for SDE models with multiplicative noise in
the form of Eq. 4. In many cases, testable and some-
times striking biological predictions result from con-
vertingan ODE to an SDE. To illustrate, we summarize
here some of the differences between the logistic SDE
(Eq. 9) and the more familiar logistic ODE.

The logistic SDE has a stationary probability distri-
bution for population abundance rather than a fixed
point equilibrium. A population in stochastic equilib-
rium continues to fluctuate above and below the de-
terministic equilibrium; outbreaks and crashes are not
uncommon.

The most likely stationary population abundance is
indicated by the mode of the gamma pdf and is below
the deterministic equilibrium. Since the stationary pdf
represents the proportion of time the population spends
at various abundance levels (see discussion of Eq. 31),
and since the median of the gamma pdf is also below
the deterministic equilibrium, the population spends
in the long run more than half the time below the
deterministic equilibrium.

A deterministic equilibrium is manifested in the SDE
model (Eq. 4) as a mode, not mean or median, of the
stationary pdf. This happens primarily when the in-
tensity of the stochastic forces as measured by the con-
stant o is small. In the stochastic logistic, the mode of
the gamma pdf is a visible sign of an underlying de-
terministic stable equilibrium. Some logistic-based
ODE models proposed in the ecological literature have
multiple stable and unstable equilibria; multiple modes
and antimodes in the SDE versions may correspond
to (though in general do not equal) these equilibria (see
Dennis and Patil 1984). In particular, the example of
a bimodal stationary pdf in the SDE version of a de-
terministic model with two stable equilibria (separated
by an unstable equilibrium) shows how bad the mean
population size can be in characterizing stochastic model
behavior.

Stochastic forces as modeled by Eq. 4 have effects
similar to harvesting in a deterministic model. The
ODE (Eq. 1) has an equilibrium given by g[X(c0)] =
0; if population members are removed at a rate hX(¢),
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where 4 is a constant harvesting effort, the resulting
equilibrium satisfying g[X,(c0)] — A = 0 is lower than
that of an unexploited population. Interestingly, the
mode, X,,, of the stationary pdf for the SDE (Eq. 4)
satisfies g(X,,) — o> = 0. Thus, the mode of the sto-
chastic model equals the equilibrium of a deterministic
harvesting model. The mode of the stationary gamma
in the stochastic logistic, for instance, equals the equi-
librium of a Schaefer (logistic-based) harvesting model
having a harvest effort of ¢ (Dennis and Patil 1984).

The mean population size in the stochastic logistic
(Eq. 9), defined by E[X(#)| X(0) = x,], does not obey a
logistic ODE. The lack of agreement between the mean
of the SDE and the solution of the ODE is a rather
general consequence of multiplicative noise. The mean
for the stochastic logistic has been obtained by Hamada
(1981) and is a complicated formula. However, the
harmonic mean of X(¢) in Eq. 9 does obey a logistic
equation. It can be shown than the harmonic mean
defined by H(t) = {E[1/X(¢£)| X(0) = x,]} ' is the so-
lution to dH(t)/dt = H(t)[(a — ¢*) — bH(t)]. Thus H(r)
obeys a Schaefer harvesting version of the original lo-
gistic ODE. We mention that all of the nonequilibrium
statistical properties of the logistic SDE are contained
in the full time-dependent transition pdf for X(¢), a
complicated expression obtained by Prajneshu (1980)
and Schenzle and Brand (1979).

Changes in the intensity of the stochastic forces as
measured by ¢ can fundamentally alter the dynamical
behavior of SDE models of the form of Eq. 4. In the
logistic SDE, for instance, an increase in o can trans-
form the stationary gamma pdf from a unimodal
mound-shaped distribution (« > 1) to a J-shaped dis-
tribution (o < 1). Further increases in ¢ can (under the
Ito interpretation of the SDE) eliminate the stationary
gamma altogether; population extinction is the ulti-
mate outcome. Such ‘“‘noise-induced transitions,” in
which system behavior changes drastically in response
to changes in noise level, have received much attention
in the physics literature (see Horsthemke and Lefever
1984). A further example pertains to SDE models of
the form of Eq. 4, in which there are two stable equi-
libria in the ODE version. An increase in ¢ can trans-
form a bimodal stationary pdf into a unimodal one;
such noise levels effectively mask the underlying de-
terministic dynamics (Dennis and Patil 1984).

The stationary distribution properties of the logistic
SDE differ substantially from those of deterministic
logistic-based ““‘chaos” models. Since May and Oster’s
(1976) paper, it has become well known that simple
difference equation models of population growth can
display complicated behavior seemingly indistinguish-
able from a random process. (The same is true for
nonlinear differential equation systems of three or more
species, as discussed, for example, by Schaffer and Kot
[1986]; our discussion here is restricted to one-species
systems.) In fact, the concept of a stationary distri-
bution can be applied to the chaotic behavior of a
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difference equation model. The types of logistic-based
difference equations listed by May and Oster (1976)
possess so-called invariant measures; that is, the long
run abundance frequencies of a chaotic population tra-
jectory approach a limiting stationary distribution (see
Lasota and Mackey 1985). For instance, the simple
difference equation given by X,,, = 4X,(1 — X)) has a
“stationary distribution” of fix) = [#\Vx(1 — x)]°',
0 < x < 1. Stationary distributions of other difference
equations can seldom be obtained analytically, but it
is straightforward to iterate any given model until lim-
iting relative frequencies are obtained. To our knowl-
edge, such exercises carried out to date almost always
produce U-shaped (bimodal) or irregular stationary
distributions for population abundance. By contrast,
the logistic SDE predicts a unimodal mound-shaped
or J-shaped distribution. Admittedly, much research
remains to be done on distinguishing chaotic behavior
from “conventional” stochastic behavior in population
data; many directions for such analyses may be found
in Holden (1986).

STATISTICAL INFERENCES

We present in this section details of various statis-
tical procedures that can be used in conjunction with
the gamma model or other stationary distribution
models. The data considered here consist of observed
sizes of a population presumed to be fluctuating around
a steady state. More ideally, the data could represent
an ensemble of populations fluctuating around the same
equilibrium value, as in Figs. 1 and 2. The procedures
are based on the use of a multinomial likelihood func-
tion and assume that the time intervals between ob-
servations are large enough so that autocorrelation is
negligible. However, we presently regard the use of the
multinomial as reasonable and practical even for time
series with more closely spaced observations.

Maximum likelihood estimates

We compute maximum likelihood (ML) estimates
for the parameters a and § in the gamma model (Eq.
10) using grouped data and a multinomial likelihood
function. Use of a multinomial likelihood function has
some practical advantages over the more conventional
use of the raw, ungrouped (or “complete”) data and a
likelihood function involving a product of gamma pdf’s.
First, computing ML estimates for a multinomial like-
lihood is extremely easy with existing nonlinear regres-
sion packages. Computing ML estimates for the com-
plete gamma likelihood requires some laborious (though
not difficult) programming. Second, the familiar Pear-
son chi-square goodness-of-fit test, plus follow-up tests
for deviations in individual cells, are based on a mul-
tinomial likelihood. When statistical distributions are
fitted using the complete likelihood function, the Pear-
son statistic does not have a chi-square distribution
(this fact does not seem to be widely disseminated in
the ecological literature). Finally, there is some prelim-
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inary justification for using a multinomial likelihood
function even when the observations form an auto-
correlated time series. These points are discussed in
detail below. We do recommend using the complete
likelihood function when the only goal of the analysis
is parameter estimation, since the standard errors of
the estimates will be smaller. However, we have here
chosen to develop the grouped multinomial approach
with the view that ecologists would likely have model
evaluation as an additional goal. This factor, plus ease
of computing and robustness of the analysis, compen-
sate for the small loss of information when using
grouped data.

The ML estimates require the quantities y,, y,, . . .,
V., representing the frequency counts of the n obser-
vations grouped into m interval classes. As with any
frequency histogram, the interval classes are selected
by the investigator; the main consideration is insuring
that the expected frequencies are large enough to con-
duct goodness-of-fit testing (see Goodness-of-fit Test-
ing). The class intervals selected should partition the
entire (positive real) sample space. Thus, the class in-
tervals would be in the form (0, s,], (s, $5], . . ., (S,_3,
Smi-1], (8,, 1, ©0); then y, is the number of observations
>0 but <s,, etc. Under this setup, the values y,, . . .,
V,, can be described with a multinomial distribution,

with 2 vy, = n. The probabilities for the interval cate-

gories are given by the corresponding areas under the
gamma pdf (Eq. 10), or if preferred. some other sta-
tionary pdf.

The cumulative distribution function (cdf) for the
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Fig. 1. Relative frequency histogram of numbers of 77i-
bolium castaneum adults fluctuating around equilibrium, plus
fitted gamma probability density function (pdf) given by
flx; &, B), where f(x; «, 8) = [8*/T(a)]x"'e~#, x = population
size, and & and 8 are ML estimates (n = 861, X2 = 21.25,

=.27,df = 18, & = 5.57047, 8 = 1.10435 x 10!, 6,2 =
ML estimate of var(a) = 7.30330 x 10-2, 5,2 = ML estimate
of var(8) = 3.10806 x 10-%,6,, = ML estimate of cov(&, 8) =
1.44386 x 107%). Note: first and last histogram bars in this
and subsequent figures indicate relative frequencies of obser-
vations in population size intervals (0, s,] and (s,,_,, ©0),
respectively. Data are from Moffa and Costantino (1977).
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FiG. 2. Equilibrium frequency of 7. castaneum cultured
at 24°C, plus fitted gamma pdf (n = 857, X> = 18.70, P = .48,
df =19, & = 5.52220, 8 = 4.98460 x 102, 4,2 = 7.05185 x
1072, 6, = 6.30151 x 10°°, 6,, = 6.38465 x 10 ¢, classes
21 and 22 were pooled during estimation). Data are from
Park (1954) as listed in Leslie (1962).

gamma distribution is defined as the area under the
pdf between 0 and x:

F(x) = Pr[X(o0) = x] = fj(u) du

=f[ﬁ"/l‘(a)]u""e podu.  (11)

The function F(x) is an integral that has no simple
form. Computing the ML estimates requires a subrou-
tine to evaluate F(x) for various values of x, «, and 3.
The gamma cdf is a library function (PROBGAM) in
SAS (SAS 1985) and is available in IMSL (IMSL 1979)
as well. Press et al. (1986:160) provide an easily pro-
grammed algorithm for computing the gamma cdf. Note
that these routines typically compute the cdf, P(e, x),
of a standardized gamma, defined as the integral from
0 to x of u*~'e~*/T(a). Then F(x) above is obtained as
P(a, Bx).

The probabilities in the multinomial distribution are
defined in terms of the gamma cdf:

pila, B) = F(s)),
Dale, B) = F(s)) — F(s)),

Po-ile, B) = F(s,,-1) — F(s,,-2),
Pule, B) =1 — Fs,,_,). (12)
Clearly, Ep, = 1. The multinomial likelihood function

for y, ..., », is then

le, ) = Q I [ (e )}, (13)
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where Q = (n!)/[(¥N(Y) . . . (,1)]. The ML estimates
are the values of « and 8 which maximize /(«, 8) or log
l(«t, B). The values are roots to the following equations:

dlog l/da = 2} (v/p)(@p/da) = 0,
J=1

dlog /98 = 2} (v/p)@p/B) = O

J=1

(14)
(15)

These equations may be solved by performing a non-
linear least squares regression (Jennrich and Moore
1975). The regression uses the values y,, y,, ..., V,,as
observations on the dependent variable, and the values
np (o, B), np.(a, B), . . ., np,,(a, B) (the expected values
of the y,’s) become the model to be fit. The regression
must be ‘“‘iteratively reweighted”; that is, weights of
[np(a, B)]' must be computed at every iteration. In
other words, the standard nonlinear regression algo-
rithms are designed to iterate toward the values of «
and § minimizing ij[yj — np/a, B)]?, where the w,
values are fixed weights provided by the investigator.
If these weights are assigned as w, = 1/[np/(e, )], they
are recomputed each iteration with updated values of
«a and 8 and hence are no longer fixed. The resulting
iterations converge to the values of @ and 8, maximiz-
ing the multinomial likelihood (Eq. 13) (proof given
by Jennrich and Moore 1975); the nonlinear least
squares package is “‘tricked” into computing multi-
nomial ML estimates of @ and 8. We have found the
moment estimates given by & = x¥/s? and 8 = %/s2,
where X is the sample mean and s? is the sample vari-
ance of the ungrouped observations, to be convenient
starter values for the ML calculations.

Nonlinear regression packages, such as PROC NLIN
of SAS (SAS 1985) or AR of BMDP (Dixon 1985), are
widely available. These two packages are particularly
convenient because they do not require derivatives.
Also, options are available in both packages (SIGSQ =
1 in SAS; MEANSQUARE IS 1 in BMDP) which pro-
duce properly scaled standard errors. SAS has the ad-
ditional convenience of the library gamma cdf; the
function must be coded as a subroutine (possibly
through IMSL) when using current versions of BMDP.

The ML estimates have an asymptotic multivariate
normal distribution (see, for example, Bishop et al.
1975: 509). The mean vector of the multivariate nor-
mal distribution is [«, 8], and the variance—covariance
matrix is

_AZ/(AIA_?

s = | M/AATA?) =A%)
A/NA=AA) |

_)\2/(}\I)\3 _)\22)
(16)
where

m

(c?p,/c?ﬁ) /D; s

5
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n 25 (3p,/8)(8p,/88)/p,,
J=1

n D, (dp,/da)/p;,
j=1

Aa

As

(17)

with p, = p/(a, §) defined by Eq. 12. The elements in
2 would be estimated by substituting the ML estimates
& and B; the expressions in Eq. 17 could be computed
with numerical derivatives. As an alternative, the op-
tions in SAS and BMDP mentioned above automati-
cally produce the large sample correlation matrix (eval-
uated at & and [S’) along with asymptotic standard
deviations (square roots of the diagonal elements of
$). The estimated variance—covariance matrix, 2, is
then easily recovered from the computer output as
follows. Let ¢, and 6, be the printed estimates of the
standard deviations of & and 8, let O be a 2x2 matrix
containing ¢, and 6, on the main diagonal and zeros
elsewhere, and let R be the printed estimate of the
correlation matrix. Then

= QORQ. (18)

Goodness-of-fit testing

Goodness-of-fit testing is easily accomplished when
the ML estimates are computed using a nonlinear
regression package. After convergence of the parameter
estimates is achieved, the final value of the weighted
residual sum of squares is

=2~ (19)
j=1
which is just the Pearson chi-square statistic. Under
the null hypothesis that the gamma model fits, X? has
alarge sample chi-square distribution with m — 3 (m —
number of parameters estimated — 1) degrees of free-
dom (Bishop et al. 1975:516). The abundance classes
should be chosen so that np(«, 3) = 5 for most classes
in order that the chi-square approximation remain val-
id.
An alternative test statistic is the likelihood ratio
(LR) statistic given by

np,(&, B)1¥[np(& B,

G* =2 2y, log(y/[np (&, B)). (20)
J=1

The j*" term in this sum is understood to be zero if

= 0. The LR statistic has the same large sample chi-
square distribution as the Pearson statistic under the
null hypothesis (Bishop et al. 1975:513). If the model
fits, the values of X? and G? are usually very similar.
We note that the ML estimates & and 8 that maximize
Eq. 13 also minimize G2. The LR statistic can be com-
puted in the SAS and BMDP nonlinear regression
packages through use of the loss function option pro-
vided in each package.
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A significant overall goodness-of-fit test may be fol-
lowed up with tests for significant deviations of the
model in individual abundance classes. The following
quantity can be regarded as a generalized residual for
the jt* class:

= [y, — np(&, B Inp(&, B)". (1)

The Pearson chi-square statistic (Eq. 19) is the sum of
the squared values of #;. A result from statistical theory
is that #, has a large sample normal distribution, under
the null hypothesis that the model fits, with a mean of
0 and a variance of

v(a, B) =1 — p, — (n/p,)b;/ Zb; 22)
(e.g., Rao 1973:394). Here p, = p/(«, @), 2 is the vari-
ance—covariance matrix for the ML estimates, and b,
is a vector of partial derivatives given by b;' = [dp,/d«,
dp,/dp]. This variance may be estimated by substituting
the ML estimates of « and 8: v, = v,(4, 3). The partial
derivatives in b; can be computed numerically. The
test statistic for the j*" class is then

Z,=i/()". (23)

Z,has a large sample standard normal distribution un-
der the null hypothesis that the model fits the j** class.

Asymptotic confidence intervals

The large sample multivariate normal distribution
of the ML estimates may be used to construct asymp-
totic confidence intervals for the parameters. Let 6,2
and 6, be, respectively, the estimated variances of the
ML estimates & and ,fi computed as diagonal elements
of the estimated variance—covariance matrix. The fol-
lowing are 95% confidence intervals (large samples) of
a and 8:

a

+ 1964,
g =

1.96 6..

(24)
(25)

The multivariate normal distribution of ML esti-
mates may also be used to obtain asymptotic confi-
dence intervals for functions of the parameters. Let
h(a, B) be a function differentiable with respect to «
and 3, and let ®# = [0h/0a, dh/3B]'. A standard result
from statistical theory is that A(&, B) has an asymptotic
normal distribution with a mean of /(«, 3) and a vari-
ance of #'Zw (e.g., Rao 1973:388). A large sample
95% confidence interval for A(a, 8) becomes (&, B) *
1.96[#'£#]”. Here # represents the vector = evaluated
at the ML estimates & and B

Large sample confidence intervals can be obtained,
for example, for the mean and the mode of the gamma
distribution. The mean and the mode are functions of
the parameters:

mean = E[X(20)] = a/8;
mode = (o —1)/6.

(26)
(27
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Thus, we have the following 95% confidence intervals:

(&/B) = 1.96[(5,%/5%) + (626,%/B%)

— (246,,/81%, (28)
(& — 1)/B + 1.96{(6,/8%) + [(1 — &)26,%/5]
+ [2(1 — &5,2/8°1)". (29)

Here 6,, is the estimated covariance of & and 8 ob-
tained from the matrix 2.

Comparing two gamma distributions

The multivariate normal distribution of ML esti-
mates may be used for comparing parameters from
two separate data sets. Comparisons can be made, for
example, between gamma distributions from two dif-
ferent populations or between distributions fit to the
same population at two different times. The following
multivariate statistical test allows formal comparison
of the parameters from two gamma distributions.

Let [, 3,] be the column vector of parameters from
the first gamma distribution, and let [«,, 3,]' be the
parameter vector from the second distribution. Since
[&,, B,] and [&, B,]' both converge in distribution to
multivariate normal distributions, the difference
[&,, B,]' — [&,, 33]' converges to a multivariate normal
with a mean vector [a;, — a5, 8, — 8,]' and a variance—
covariance matrix of, say, £, + Z,. The null hypothesis
is Hy: [a, — a», 8, — B,]' = [0, 0], that is, both gammas
have identical parameters. The alternate hypothesis is
H;: [a, — a5, B, — B,]' # [0, 0]'. The test statistic is a
type of Wald statistic (e.g., Rao 1973:417):

D> =& — &, B _ﬁ:] [21 + 22]'|'
[&1 - &2’ 61 - 62]1- (30)

Under the null hypothesis, D? has a (large sample) chi-

square distribution with two degrees of freedom.

As an alternative, we mention that the testing for
differences between two gammas can be done with the
likelihood ratio approach. One first finds pooled ML
estimates of @ and 8 by pooling the two data sets to-
gether. Denote by /, = l(&,, B,) the likelihood (Eq. 13)
evaluated at the pooled ML estimates &, and BO. One
then obtains the ML estimates [&,, 3,] and [&», 3,] sep-
arately for each data set. Denote by /, and /, the cor-
responding maximized likelihoods. Then —2[log /, —
log(/,/,)] has a large sample chi-square distribution with
two degrees of freedom under the null hypothesis. Ad-
ditional computing effort is required for this test, though
experience seems to indicate that it has better prop-
erties for smaller sample sizes.

Time-dependent observations

An underlying assumption for such ML estimates is
that the frequency counts y,, ..., y,, form a sample
from a multinomial distribution. The assumption is
not strictly valid if the underlying observed population
sizes are time series data. For time series data, Eq. 13
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is not the true likelihood function for the frequency
counts. However, as the time interval between obser-
vations becomes large, the likelihood function for the
counts approaches Eq. 13 asymptotically. Thus, the
question becomes whether the observations are far
enough apart to justify using Eq. 13 as a likelihood
function.

This question can be partly addressed by examining
the empirical autocorrelation structure of the data us-
ing standard time series methods. If the autocorrelation
between observations is small, then it is reasonable to
compute ML estimates for the stationary gamma with
the methods described in this paper.

These ML estimates may possibly remain reasonable
even when the interval between observations is small,
due to the ergodic nature of the process X(7). As ¢
becomes large, the proportion of time that the process
spends in the abundance interval (s, ,, s,] approaches
the proportion p,(«, B) given by Eq. 12. If the process
was sampled at equal time intervals, the proportion
v/n of samples found in the abundance interval (s,_,,
s,] should approach p(a, 8). Specifically, the ergodic
theorem states that

t

lim (1/¢) I, [ X(7)] dr = F(b) — Fla), (31)

0

where I, ,(x) is the indicator function of the interval
(a, b] (=1 if a < x = b; 0 otherwise), and F(x) is the
cdf of the stationary distribution of X(¢) (e.g., Horst-
hemke and Lefever 1984:114). Thus, estimating « and
B by maximizing Eq. 13 (i.e., minimizing the “dis-
crepancy’ between y,/n and p,(«, 8) as measured by G?
[Eq. 20]) appears to be a reasonable procedure, even
when the observations of the process X(¢) are closely
spaced. Two qualifications are: (a) the process must be
observed for a long time, and (b) the process should
be observed at equally spaced intervals. It is worth
mentioning that if the observation times are selected
at random from a uniform distribution on (0, ¢), then
the actual distribution of the interval counts y,, ...,
V., will be approximately multinomial for large ¢, with
the likelihood function given by Eq. 13.

Recent results by Gleser and Moore (1985) indicate
that the chi-square goodness-of-fit test (Eq. 19) will
reject the null hypothesis too often when the observa-
tions are closely spaced. Thus, if the hypothesis of
goodness of fit is not rejected by the chi-square test,
one can be fairly confident that H, would also not be
rejected using the true distribution of the test statistic.
The effects of autocorrelation on the other statistical
inferences described here, unfortunately, remain un-
known at this time.

We note finally that these stationary distribution
models are inappropriate for time series with signifi-
cant periodic components. Spectral analysis can help
determine if such components are present.
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ILLUSTRATIVE EXAMPLES

In this section, we analyze 11 data sets on observed
stationary distributions of the flour beetle Tribolium.
The analyses of the data sets demonstrate the overall
usefulness of the gamma model and illustrate several
statistical procedures, including: the estimation of pa-
rameters, testing goodness of fit, obtaining confidence
intervals for parameters, and the comparison of two
gamma distributions. These examples serve to em-
phasize that flour beetle equilibria are stochastic, that
data on stationary distributions of populations are
sometimes available, and that the development of sta-
tistical procedures is important for evaluating sto-
chastic models.

The observed distributions were obtained from sev-
eral different laboratories, and the original experiments
had differing objectives. Our descriptions of these ex-
periments are necessarily brief due to space limitations;
consequently, readers should consult the original sources
for more details.

In general, the experiments had many common fea-
tures. At the outset, a group of beetles (sometimes adults
only, or perhaps a combination of all life stages) were
placed in a vial containing a standard wheat flour me-
dium. The cultures were maintained for many months
and, in several experiments, for a period of 3 yr in
incubators with temperature, relative humidity, light,
and other environmental factors tightly controlled. At
regular intervals (often 7, 14, or 30 d) the cultures were
removed from the incubator and censused. All of the
life stages (except eggs, usually) were counted and then
all living life stages were returned to fresh medium.
We should note that for one genetic stock the medium
renewal schedule was, itself, an important environ-
mental factor. Strain bl of T. confusum had such a low
rate of cannibalism that self-destruction was avoided
only by the intervention of the experimenter (Park et
al. 1964).

The data considered here are the number of adults
observed in many independent, replicate Tribolium
cultures maintained in the region of their steady states.
Arranged in m class intervals, the adult numbers re-
corded for the ensemble of replicates in each experi-
ment were used to establish the grouped frequency
counts y,, ¥, ..., V., Where the total number of ob-
servations n = Q,y,. These y, values constitute the ob-

served grouped frequency distribution for a particular
data set.

In these examples, we conduct goodness-of-fit tests
at the 0.01 significance level. This more conservative
level helps compensate for possible time series effects,
which too often cause rejection of the null hypothesis
as discussed earlier.

Convergence to a genetic polymorphism

One concern of population genetic research is the
association between the genetic structure of a popu-
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lation and its demographic behavior. Moffa and Cos-
tantino (1977) showed that 37 cultures of 7. castaneum
initially segregating for the corn oil sensitive, cos, allele
converged to a stable polymorphic genetic equilibrium
with an equilibrium cos allele frequency in the vicinity
of 0.30. What was the corresponding size of the pop-
ulation? The frequency counts of adult beetles, y,, y,

., V,, taken in the region of the steady state (week
20 to week 68) on the 37 cultures grouped into m =
21 class intervals are given in Table 1. As mentioned
in a previous section, the likelihood function is given
by Eq. 13 and the ML estimates of & = 5.57047 and
B = 0.110435 were obtained as the roots of Egs. 14
and 15. An =95% confidence interval for the mean
abundance is obtained from Eq. 28 as 50.43888 =+
1.42544. Goodness-of-fit testing was accomplished us-
ing the chi-square statistic (Eq. 19) with m — 3 = 18
degrees of freedom. The computed chi-square value of
21.25 allowed us to accept the null hypothesis that the
gamma model fits these data, which seems reasonable
from the sketch of the observed and gamma expected
distributions given in Fig. 1.

SDE models can be constructed to yield other skewed
distributions, such as the lognormal, as stationary so-
lutions (e.g., Dennis and Patil 1984, 1988). Also, SDE
models can be approximated by a Gaussian (time-de-
pendent Ornstein-Uhlenbeck) process through singular
perturbation methods, yielding a normal stationary
distribution (see Gardiner 1985:177). Do these distri-
butions fit the data as well as a gamma? Readers are
invited to confirm that a lognormal distribution does
not fit these data as well due to the heavy right tail of
the lognormal, and that a normal distribution does not
fit due to the skewness of the data.

T. castaneum cultured at 24°C

Park (1954) studied 20 replicates of 7. castaneum
cultured at 24° and 70% relative humidity. The ob-
served grouped frequency distribution was based on
adult numbers recorded at 30-d intervals beginning at
day 360 onward to day 720 (Leslie 1962: Table N) for
a total of 857 observations (Fig. 2). An =~95% confi-
dence interval for the mean abundance is 110.78522 +
3.14428. The hypothesis that a gamma distribution fits
the data was accepted. Again, a lognormal distribution
does not fit, suggesting that not just any right-skewed
distribution will adequately describe the data. Also, a
normal distribution does not fit, suggesting that normal
approximations to stationary pdf’s of the form of Eq.
5 might not be adequate in some circumstances.

Population outbreaks

Mertz (1969) investigated the effects of different ini-
tial conditions using a new strain, cIV-a, of T. casta-
neum. He set up nine sets of initial conditions repre-
senting different initial densities and ages of adult
beetles. Ten cultures were started in each of the nine
treatments and sampled every 30 d, though three of
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TaBLE 1. Observed frequency counts (y,) of Tribolium cas-
taneum adults, estimated expected counts [np,(&, §)] under
the gamma model, and left and right class interval bound-
aries (s)), corresponding to Fig. 1.

Left Right Observed Expected
S S, Y np/(&~ 6)
0 12.5 4 5.01
12.5 17.5 21 15.81
17.5 2255 36 33.38
22,5 27.5 53 53.03
27.5 325 81 70.16
325 37.5 72 81.70
37.5 42.5 72 86.63
425 47.5 78 85.50
47.5 52.5 77 79.73
52.5 57.5 69 71.01
57.5 62.5 66 60.88
62.5 67.5 55 50.57
67.5 72.5 55 40.87
72.5 77.5 38 32.27
77.5 82.5 25 24.96
82.5 87.5 18 18.97
87.5 92.5 11 14.19
92.5 97.5 10 10.46
97.5 102.5 10 7.62
102.5 107.5 5 5.48
107.5 o 5 12.77

the cultures were lost at the outset. By day 360, most
of the transient effects of initial conditions, such as age
structure imbalances, had damped out in the cultures.
The 87 populations sampled from day 360 through
day 600 provided a total of 783 observations on equi-
librium adult numbers.

The equilibrium frequency distribution appears uni-
modal and positively skewed (Fig. 3). A gamma dis-
tribution does not fit very well, due to significant de-
viations in the 1st, 2nd, 4th, and 14th cells. The gamma
does, however, describe the essential features of the
equilibrium far better than a deterministic model with
a fixed point equilibrium.

Mertz labeled certain observations as representing
“outbreaks” in population levels. An outbreak was de-
fined as a surge in population size of 25% or more
within two sample periods. A stationary pdf such as
the gamma provides a different definition of outbreak
which may be useful in biological monitoring. An out-
break can be defined as the population exceeding some
specified level, x. For the gamma model, the proba-
bility of thateventis 1 — F(x), where F(x) is the gamma
cdf (Eq. 11). An estimate of the outbreak probability
is obtained by substituting the ML estimates & and 8
in F(x) (and using a computer routine to evaluate the
integral in Eq. 11). For instance, using a threshold level
of x = 132.5, the estimated chance of outbreak is about
0.04, roughly in accord with the observed frequency
of =0.05 (Fig. 3).

Interestingly, a lognormal distribution fits this data
set somewhat better than the gamma (though still not
acceptably at the .01 level). An SDE model that pre-
dicts a lognormal stationary distribution has a convex
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per-unit-abundance growth rate, g[X(¢)] (Dennis and
Patil 1984, 1988). The original SDE flour beetle model
also has a convex form for g[X(r)]; perhaps the linear
approximation to g{X(¢)] implicit in the gamma model
has some shortcomings for this data set. The possibility
that details of curvature in g[X(?)] might be detected
through statistical analysis of stationary distributions
deserves further study.

Comparison of two strains

Lloyd (1965, 1968) examined the growth pattern of
two strains of 7. castaneum. Twelve individual rep-
licates of each strain, Brazil and Chicago, were initiated
with 32 small larvae, 7 large larvae nearing pupation,
and 8 adults. Thereafter each culture was censused each
week for 35 wk. The observed stationary distributions
(Fig. 4) were generated in the usual way beginning with
the adult counts at week 19. The region of the steady
state extended over 17 wk and gave a total of 204
observations on each strain.

The gamma hypothesis was accepted for the Chicago
strain as well as for the Brazil strain. However, these
strains have statistically different parameter estimates
according to the D? test. Interestingly, Lloyd (1968)
used the Mann-Whitney U test to evaluate the average
number of adults in these two strains and concluded
that the levels were essentially the same. Clearly, the
differences were not large, but the use of the gamma
does allow a fuller characterization of the steady state.

Polymorphism vs. homozygosity at the cos locus

An analysis of the stability of a dynamic system
involves imposing a perturbation in the neighborhood
of an equilibrium and then characterizing the subse-
quent response of the system. This approach was used
by Desharnais and Costantino (1980, 1985) to study
further the genetic polymorphism at the cos locus (Mof-
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fa and Costantino 1977). Populations of 7. castaneum
homozygous for the corn oil sensitive allele were es-
tablished. The question of stability was addressed by
observing both the genetic and the age structure changes
following the introduction of genetically different (+/
+) individuals into the homozygous cos populations.

The data set consisted of 29 consecutive adult cen-
suses on 11 cos homozygous populations (319 obser-
vations) and 6 polymorphic populations (174 obser-
vations) obtained while the adult numbers were
fluctuating in the region of their steady states (week 62
to week 128). The hypotheses that these observed dis-
tributions (Fig. 5) were gamma was accepted for both
populations. The null hypothesis that these gammas
have identical parameters was rejected using the D2
test statistic.

Several evolutionary models predict that natural se-
lection will maximize the equilibrium size of a popu-
lation (see Desharnais and Costantino 1983). Was that
the situation in this experiment? As we have seen (Fig.
5), adult numbers in the experimental cultures did not
converge to a fixed equilibrium point. Instead, the pop-
ulations were found to fluctuate around a mean value.
The stationary distribution concept has provided a way
to characterize these genetically different populations
so that we can begin to test experimentally this max-
imization hypothesis.

Same population at two different times

T. castaneum strain cIV was studied in 1964 and
again in 1968 (Park et al. 1964, Leslie et al. 1968). For
the 1964 data set the gamma was accepted but for the
1968 data this was not the case (Fig. 6). The gamma
significantly overpredicts the 1st cell and significantly
underpredicts the 4th cell of the 1968 data, though it
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FiG. 4. Equilibrium frequencies of 7. castaneum Brazil
and Chicago strains, plus fitted gamma pdf’s (Brazil: n = 204,
X?2=0972,P=.37,df =9,& = 5194132, 8 = 9.25203
10-1,6,2=28.84571,46,2=9.26200 x 10 3,4,,= 5.14581
10~"; Chicago: n = 204, X? = 5.26, P = .26, df = 4, &
54.71710, B = 9.04757 x 107!, 6,> = 37.07329, &,*
1.02330 x 10°2,6,,=6.13617 x 10-'). Data are from Lloyd
(1965). Brazil: left; Chicago: right.

I xx



August 1988

BABZIi
0.8184
9.815+
>
o
Z 8.9124
w
=2
C  p.009]
w
4
w
0.806
9.903-
9.900—
80 190 120 149 160 189 200 220 240 260
POPULATION SIZE
Fic. 5. Equilibrium frequencies of two groups of 7. cas-

taneum populations, one group homozygous for the cos (corn
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6,2 = 7.06359 x 1074, 6,, = 1.07790 x 10~'; polymorphic:
n =174, X> =9.29, P = .16, df = 6, & = 50.34501, 8 =
2.79550 x 107!, 6,2=37.95802,46,> = 1.16405 x 1073, 5,, =
2.09354 x 10-'). Data are from Desharnais and Costantino
(1985). Homozygous: left; Polymorphic: right.

captures the essential shape of the histogram. Com-
paring these two populations using the D? test is not
appropriate, since the gamma does not fit one of them.
However, it is clear that the distributions are not the
same. Are the predictions of the stochastic model con-
sistent with the biological information on this strain?
In their analysis of strain cIV-1968, Leslie et al. (1968:
15) discussed three changes in this stock: first, the av-
erage death rate per head of adult population per 30 d
was reduced from 0.1982 in 1964 to 0.1571 in 1968;
second, the average fertility of eggs was increased from
66.5 to 85.4%; and third, the average duration of the
immature life stages was shortened from 31.09 to 27.81
d. As noted in Fig. 6, both the mean and variance of
the stationary distribution increased in 1968 as com-
pared with 1964, which is entirely consistent with the
predictions of the gamma density function.

In a similar manner, strain bl of 7. confusum was
studied by these same authors in 1964 and again in
1968. The gamma model fits the 1968 data, but not
the 1964 data (the 1964 data deviate significantly from
the model in the 1st, 4th, and 9th cells of the 1964
data pooled for estimation as in the caption of Fig. 7).
The observed distributions for these two years (Fig. 7)
indicated a reduction in both the mean and variance
of the stationary density. What had happened? Leslie
et al. (1968:15) wrote, “the principal change in this
strain appears to lie in an increase of its cannibalistic
powers.” Our prediction is in agreement with their
statement: an increase in the rate of cannibalism C
would reduce both the mean and variance of the gam-
ma distribution.
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FiG. 6. Equilibrium frequencies of 7. castaneum strain
cIV in 1964 and 1968, plus fitted gamma pdf’s (1964:
n =604, X> =2199, P=.02,df = 11, & = 10.25296, 8 =
2.44945 x 107", 4,2 = 3.60986 x 107!, 5,2 = 2.19487 x
10-4, 6,, = 8.70851 x 1073, classes 14-18 pooled during
estimation; 1968: n = 584, X* = 24.91, P < .01, df = 10, &
= 8.95566, 3 = 1.22223 x 107!, 4,2 = 1.98421 x 10, 6,°
= 3.54295 x 10735, 6,, = 2.54135 x 1073, classes 13 and 14
pooled during estimation). Data are from Park et al. (1964)
and Leslie et al. (1968). 1964: left; 1968: right.

CONCLUSIONS

In their excellent text, Modelling Fluctuating Pop-
ulations, Nisbet and Gurney (1982:186) stated, ““Cal-
culation of a population’s probability distribution is
normally a means to an end rather than the end itself
if for no other reason than that it is a virtually un-
measurable quantity, . . .””. Though their statement is

0.0125
> 0. 0100-
o
4
w
S 0.80759
o
w
[:4
L 9.0050-
0.0025
9.0000- ~ R SN
; : . . . . S . .
2] 50 100 150 200 250 380 350 400 450 L00
POPULATION SIZE
Fic. 7. Equilibrium frequencies of 7. confusum strain bl

in 1964 and 1968, plus fitted gamma pdf’s (1964: n = 406,
X2 =5420,P < .01,df =12, & = 20.88335, 3 = 7.82071 x
10-2, 6,2 = 2.38350, 6,> = 3.40828 x 10-%,4,,=8.91789 x
1073, classes 1-4 pooled and classes 18-21 pooled during
estimation; 1968: n = 186, X* = 10.52, P = 48, df = 11,
a = 27.56627, 8 = 1.53157 x 1071, 6,2 = 7.92021, 4,> =
2.48806 x 10-4,5,,=4.39736 x 102, classes 15-19 pooled
during estimation). Data are from Park et al. (1964) and Leslie
et al. (1968). 1968: left; 1964: right.
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quite correct for many populations, we believe there
could be numerous situations in ecology for which the
distribution is indeed observationally or experimen-
tally accessible.

For instance, such data are available for adult pop-
ulations of the flour beetle Tribolium. The flour beetle
populations do not converge to a fixed, stable point
equilibrium, but rather fluctuate irregularly around
some mean value. A deterministic (ordinary differen-
tial equation) growth model can only describe the av-
erage forces of adult recruitment and mortality in these
populations. A simple stochastic extension (stochastic
differential equation), however, can capture the vari-
ability of these forces, producing emergent, testable
predictions about the dynamic behavior of the popu-
lations. The stochastic flour beetle model presented in
this paper predicts a positively skewed, stationary dis-
tribution for population size rather than a fixed point
equilibrium. The model can be approximated reason-
ably well by a stochastic logistic model which yields a
stationary gamma distribution for population size. Ex-
ample data sets presented in this paper are consistent
with this prediction.

Careful attention to statistical methods is important
in assessing agreement of population dynamics models
and data. Much research on statistical inference for
dynamic models remains to be done, and much existing
research in the mathematical statistics literature re-
mains to be implemented in ecological work. The
methods presented in this paper for estimation and
testing with stationary distributions are simple,
straightforward to compute, and easy to understand.
With these methods, the concept of stochastic equilib-
rium becomes a parsimonious hypothesis about pop-
ulation regulation that is vulnerable to empirical test-
ing.

In particular, our results with flour beetle data de-
scribed in this paper suggest that the gamma distri-
bution deserves more widespread consideration as a
stochastic equilibrium abundance model for other
species.
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