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ABSTRACT

The gamma probability distribution is a general model of a population fluctuating
around' a steady state. We show this using stochastic differential equations (SDEs),
constructed by adding white noise to the specific growth rate in deterministic models of
population abundance. The gamma is an approximate stationary solution for almost any
SDE having an underlying deterministic equilibrium. If the deterministic model possesses
multiple stable and unstable equilibria, the approximate stationary solution to the stochas-
tic case is a weighted gamma distribution. Modes of the stationary distribution roughly
correspond to the equilibria of the deterministic model. Stochastic forces “have effects
similar to harvesting. These findings provide: (1) a theoretical basis for certain descriptive
uses of the gamma in staltistical ecology, (2) a concise graphical summary of the interactions
between density dependent and density independent population regulation, (3) a statistical
framework for fitting catastrophe-theoretic models to ecological data sets.

0. INTRODUCTION

A gamma, or Pearson type III, distribution has the probability density
function (pdf)

f(n)=f‘_((x_sjnx—lefan’ 0<n<00,

where « and s are parameters (0 < «, 0 <), and I'(-) is the gamma function
(Patel et al. [46]).

The gamma plays a curious role in statistical ecology. It is a traditional
model of population abundance, used purely for mathematical or empirical
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convenience, but without any ecological meaning. The gamma is quite
successful in this traditional role: it “mixes” well, has only two parameters,
and is flexible enough to describe a wide variety of data sets.

For example, the gamma is utilized in a standard sampling mode] for
spatial dispersion. The number of individuals, X, of a species appearing in a
given sampling unit is treated as a Poisson variate with mean abundance n.
The sampling units are then assumed heterogeneous by assigning a gamma
distribution to n, resulting in a negative binomial distribution for X (e.g.,
Pielou [54], Boswell et al. [5]). Assigning a distribution to a parameter in this
fashion is often termed “mixing” in the statistics literature.

In another example, the gamma is a “species abundance distribution”
used in community ecology studies. The mean abundances of species in a
collection are assumed to be independent, identically distributed gamma
variates. From this assumption springs a whole range of species abundance
models used in ecological work, including the negative binomial, extended
negative binomial, log series, generalized log series, generalized gamma,
Dirichlet, and broken-stick (Pielou [53], Kempton [34], Engen {18], Engen
and Taillie [19]).

Recently Costantino and Desharnais [13} have demonstrated that the
gamma distribution offers an excellent empirical description for the abun-
dances of laboratory flour bettle ( Tribolium) populations at steady sate. They
obtained the gamma as an approximation to the steady-state probability
distribution for the stochastic version of a flour-beetle growth model. Their
work has shown that the gamma may have a deeper biological meaning,

The purpose of this paper is to suggest a general biological cause for the
gamma distribution of population abundance. We show that the gamma is
the approximate stationary distribution for the abundance of a population
fluctuating around a stable equilibrium. We employ the methods of stochas-
tic differential equations (SDEs) to model the effects of random environmen-
tal fluctuations on a population’s growth rate. The result of Costantino and
Desharnais {13] is thereby generalized to apply to the stochastic version of
almost any population model having a stable equilibrium. We believe the
gamma provides a succinct statement of the interactions between density
dependent and density independent population regulation.

The paper is organized as follows. The first section sets up the machinery
of SDEs, with discussion on ecological and mathematical interpretation of
the models. The second section obtains the gamma distribution as the
approximate steady-state solution of the SDEs. The exact solutions for
various models popular in the ecological literature are compared with the
corresponding gamma approximations. The third section discusses the rela-
tionships between underlying deterministic models and their stochastic coun-
terparts. The relationships between modes and equilibria, stochastic forces
and harvesting, and density dependence and independence are discussed. The
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last section examines recent deterministic population models having multiple
stable and unstable equilibria. The solutions to the stochastic versions of
these models are weighted gamma distributions having multiple modes and
antimodes corresponding to the deterministic equilibria. We close the section
with some remarks on catastrophe theory and data analysis.

1. STOCHASTIC POPULATION-GROWTH MODELS

Deterministic models of population growth often have the general form
dn
& = ng(n), (1)
where n is population density at time ¢, and g(n) is the specific growth rate,

assumed an autonomous function of »n (Freedman [23]). If an equilibrium,
denoted 7, exists, it will be a root of

g(n)=0. (2)
The equilibrium is locally stable if
g'(7) <0, 3)

that is, a population perturbed from equilibrium by a moderate amount will
ultimately return to size 7 if g(#n) is decreasing at n = 7.

A stochastic version of this model may be constructed by adding “ white
noise” to g(n). We add noise to the specific rate because environmental
fluctuations chiefly affect growth or reproduction of individuals belonging to
populations. The stochastic model may be written as

&= nlg(m)+h(m)z(0)], 4)

where z(¢) is a Gaussian process (white noise) with variability parameter o,
and A (n) is a function specifying any density dependence in the effects of the
noise. The noise is assumed density independent in many applications by
taking #(n)=1. We view the noise as a phenomenological description of the
effects of unpredictable environmental fluctuations on the specific growth
rate of the population. May [38] and Roughgarden [60] provide good intro-
ductions to ecological and genetical uses of these SDEs (see also Goel and
Richter-Dyn [24], Capocelli and Ricciardi [8], Tuckwell [63], Ricciardi [58],
Ludwig [36], Kiester and Barakat [33], Dennis and Patil [17], Braumann [7],
Karlin and Taylor [32]).

The above interpretation of the noise differs from usual usage in ecologi-
cal studies. Many investigators single out a particular parameter in g(n),
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such as r in the logistic form r —(r/k)n, and add noise to the parameter. It
is important in such studies for the parameter to have a clear biological
meaning in order for its noisy version to be useful. We believe the biological
meaning of r and k in the logistic is still somewhat ambiguous. The parame-
ter k, for instance, the “environmental carrying capacity,” is measured in
units of population density and not in units of some explicit environmental
variable. A rigorous derivation of the logistic growth model based on
underlying nutrient conditions has been given (Williams [65], Dennis [14]),
but it requires some rather restrictive assumptions about how organisms feed.
Instead, we view the logistic as an approximation of some more detailed,
unspecified, growth model (Section 2). Likewise, the noise fluctuations are
not measured in units of environmental factors (such as temperature or
nutrient supply) but rather in units of the quantity to which noise is added.
We here use noise in a statistical sense as a model of random fluctuations in
the specific growth rate caused by a variety of unspecified environmental
variables.

Differences of interpretation aside, adding noise to any particular parame-
ter occurring linearly in g(») will produce an SDE in the form of (4).

Strictly speaking, models such as (4) must be defined in terms of a
stochastic integral, two common definitions being the “Ito” and the
“Stratonovich” calculi (see, for example, Mortensen [42}). The difference
between the two calculi has caused some controversy in ecology (Feldman
and Roughgarden [20]), but is mostly semantic (Braumann [6]). Accordingly,
we shall here list results from both calculi with the help of an “Ito-
Stratonovich indicator” variable, w:

_Jo? if Ito calculus is used;
0?/2  if Stratonovich calculus is used.

Of primary interest is the pdf of » at time ¢, denoted f(n, t). According to
the usual theory for these stochastic models, f(#n,t) satisfies a partial dif-
ferential equation of the form

af(n,t) _ 92[v(n)f(n,!)]_3['"(n3f(nyt)]y (5)

1
at 2 an?

where v(n) =0a%n?[h(n)]*> and m(n) = ng(n)+(c* — w)nh(n)[h(n)+
nh’(n)]. For many models, f(n,!) approaches a limiting, stationary pdf,
denoted f(n), as t — 0. The population then attains a stochastic equilibrium.
Setting df(n)/dt =0 in (5) gives Wright’s [67] formula for the equilibrium
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pdf (0 < n < 0):

= Vex 2l _g(L)_ n—&)— n_Zw ,
f(n)=ye P(o,_fn{[h(n)]z}d e log g logh(n)|. (6)

Here y is a constant found by setting the area under the curve f(n) equal to
one.

The difference between Ito and Stratonovich calculus manifests itself in
equilibrium in the form of weighted distributions. A weighted distribution
has a pdf, f,,(n), of the form

_wln)f(n)
folmy =5l ™)

where w(n) is a weight associated with each valué of n, and f(n) is a pdf
(Rao [57], Patil and Rao [48,49]). Denoting the Ito and Stratonovich equi-
librium pdfs by-f;(n) and f¢(n) respectively, we find from (6) that

nh(n)fi(n)

E[Nh(N)]’ ®)

fs(”)=

with »; being the Ito random variable for the population size. The

Stratonovich pdf is thus just a weighted version of the Ito pdf.
Furthermore, a Stratonovich variable is a size biased Ito variable under

the special case of density independent noise. Taking A(n) =1 in (8) gives

nf;(n)
fs(n)=——3, (9)
S( ) E[ Nl ]
which is the pdf for the size biased Ito variable (Patil and Rao [49]). A result
following immediately from (9) is that

1

E[_lm:E[N’]’ (10)

where 1/E[1/N;] is the harmonic mean of the Stratonovich variable.

The gualitative predictions of the two calculi under density independent
noise will always agree at equilibrium. Note that when A(n)=1, f(n) (6)
takes the form

f(n)=\,!/e‘”°g"*”(”’, (11)

where a = ~2w /0?2, and b(n)=(2/06%)[[g(n)/n]dn. This pdf belongs to
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the log-exponential family of pdfs defined by Patil and Ord [47]. The
log-exponential family has the “form invariance” property: the size biased
version always retains the same form as the original pdf. Thus, if the Ito
calculus predicted a certain type of equilibrium distribution, such as a
gamma, lognormal, etc., the Stratonovich calculus would predict the same
type (provided both pdfs exist).

2. THE GAMMA DISTRIBUTION

THE GAMMA APPROXIMATION

A suitable approximation to (6) exists in the case where the deterministic
model (1) has a stable equilibrium. In other words, an approximate proba-
bility distribution is available for the size of a population fluctuating around
a single steady state. The Taylor series expansions about 7 of certain terms in
the exponent of (6) give [noting (2)]:

gQﬂ2= ﬂ?)fﬂn—ﬁ% !Qﬂ2_2ﬂﬁnyw
[r(m)]"  [A(7)] [A(7)] [r(7)]

+ higher-order terms
o (n—m) &)

e

logh(n)=1logh(#)+(n—n)

h'(n)
h(#n)

+ higher-order terms.

Using these approximations in (6) gives the gamma pdf:
f(n)=yn"le ™, 0<n<oco, (12)

where

— {wh’(?x)—g@},

" o2 (7) h(#)
oo —2mg(R) 2w
o [h(7)]’ o

The normalization constant is y = a°/T'(s). Conditions for the existence of
this pdf are s > 0 and a > 0. The mean population size under the gamma is
s/a, while the most likely population size (mode), denoted 7, is (s —1)/a.
The typical shape of the gamma is unimodal and skewed on the right (Figure
1), though the distribution is J-shaped when 0 <s<1. The exponential
distribution is a special case of the gamma when s =1.
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F1G. 1. The pdf for the gamma distribution plotted as a function of population size.
The expected population size, E[ N}, is greater than the most likely population size (mode).

The gamma distribution is thus a general model of a population fluctuat-
ing around a stable equilibrium. May [38] discusses a normal-distribution
approximation to f(») aimed primarily toward analyzing multispecies sto-
chastic models. May’s approach has the advantage of mathematical tractabil-
ity for such multispecies problems. The flour-beetle data of Costantino and
Desharnais [13], however, reveal a distinct right-skewness in the distributions
of single species abundances at equilibrium. The gamma model preserves this
empirical property of skewness. In addition, it has the added advantage of a
positive range, whereas under a normal distribution, population abundance
may take negative values. Nonetheless, the gamma and the normal distri-
butions will be similar if the intensity of the stochastic forces (as measured by
6?) is very small.

THE LOGISTIC MODEL

The logistic equation is a Taylor series approximation near equilibrium to
any deterministic model of the form (1). Specifically, expanding g(») around
n, we have

B nlg(m)+ (n=m)g )+ -]

=rn—£n2, (13)

where r= —7ig’(A) and k = 7ii. The logistic model has a colorful history in
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ecology (Hutchinson [31]). The above Taylor-series approach attributes no
particular significance to the parameters r and & beyond being the intercepts
for the vertical and horizontal axes of the linear approximation to g(n).

As May [38] and others have noted, the stochastic version of the logistic
with density independent noise yields the gamma as an exact result. Specifi-
cally, using g(n)=r—(r/k)n and h(n)=1 in (4) produces the gamma pdf
(12) exactly, with a=2r/(ko?) and s = (2r/0%)+1—(2w/0?). The mean
and the mode of the distribution become E[N]= k[l +(02/2— w)/r] and
fi=k(1—w/r). The expected population size would thus be equal to
(Stratonovich) or slightly less than (Ito) the deterministic equilibrium, 4. The
mode falls below k.

A FLOUR-BEETLE MODEL

Costantino and Desharnais [13] studied some stochastic versions of a
model describing growth of flour-beetle populations (Lloyd {35]):

Z—’tl=n(>\e‘ﬂ"—p). (14)
A model in discrete time similar to (14) is known in the fisheries literature as
the Ricker model (after Ricker [59]). A stable equilibrium exists at n =
(1/B)log(A/p). Costantino and Desharnais approximate unwieldy exact
stationary distributions for stochastic versions of (14) by gamma distribu-
tions. With A(n) =1, the exact stationary distribution for (4) using (14) is

F(n) = yn=0tgm02EOm) 0<n<oo, (15)

where 6, =Q2u/0*)+Qw/0%)—1, 6,=2A/0% 6,=8, and E,(-) is the
exponential-integral function (Abramowitz and Stegun [1]). The gamma
approximation (12) gives a=28u /0%, s=(2/0*)[plog(A /u)— w]+1. The
exact pdf (15) has a mode at 7 —(1/8)log(1 + w /), whereas the gamma has
a mode at 7 —(1/8)(w/p), which reasonably approximates the exact mode
when w /u is small. Evaluating  in (15) requires numerical integration.

FISHERIES MODELS

May etal. {41] examine the stochastic behavior of numerous models
popular in the fisheries-harvesting literature, including (14) above. Two of the
models are

%=n[>\[3—>\logn]. (17)
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The discrete-time (“stock-recruitment™) version of (16) is called the
Beverton-Holt model (Beverton and Holt [4]), and (17) is due to Fox [22]. A
stable equilibrium exists for (16) at 7= (A /u)—B, and for (17) at 7 = €”.
Exact equilibrium distributions resulting in the stochastic cases using h(n) =1
are, respectively, the beta type II (of which the F distribution is a special
case) given by

f(n)=yn®=0"Y(B+n)"",  O<n<o, (18)

where 8, = 2X /(B0?), 0, = 21 /0*)+(2w/a?)—1, and ¢ = B%:T(8,)/[T(6,
- 9,)T'(8,)]; and the lognormal:

_(bgn—0J2

f(n)=yn lexp 20, ], 0<n<oo, (19)

where 6, =8+[0°/2N)]—(w/]), 8,=0*/(2)), and ¥ =1//8,27. The
gamma approximation to (18) would have a=(2u/0?)(n/A) and s=
[(Qu/e*)(1-Bu/N))+1—(2w/6?). The mode of the gamma at 7 —
(A /p)w/p) would approximate the true mode of (18) at 7 — (A /p)[w/(p +
w)] for small w. Approximating (19) by a gamma distribution would set

PDF

Population Size

F1G. 2. The beta type-II pdf (dashed curve) compared with the gamma approximation
(solid curve). The vertical dashed line gives location of the deterministic equilibrium from
the model (16).
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F1G6. 3. The lognormal pdf (dashed curve) compared with the gamma approximation
(solid curve). The vertical dashed line gives location of the deterministic equilibrium from
the model (17).

a=2A/o%)e P ands=(2A/0*)—(2w/0%)+1. While the lognormal model
(19) has a mode at 7i(e~“/*), the gamma mode at 7#(1 — w /) would be close
by when w is small compared to A. The gamma approximations to both the
beta type II (Figure 2) and the lognormal (Figure 3) resemble the exact
distributions very closely.

In most practical instances, one would not be able to discriminate between
these exact distributions and the gamma on the basis of fit to a given data
set. The distributions are shaped similarly and tend to describe data equally
well (or poorly). Further information would be necessary to distinguish
among specific underlying forms for g(») in these models. In the absence of
such information, the gamma would seem a logical choice because of its
generality.

SPECIES ABUNDANCE DISTRIBUTIONS

R. A. Fisher conceived of using the gamma model as an underlying
common model of abundance for a collection of species (Fisher et al. [21}]).
F. Preston, on the other hand, utilized the lognormal in a similar role
(Preston [55,56]). That the gamma has some underlying basis as a general
equilibrium model for population size lends credence to Fisher’s instinct. The
lognormal (19) as an equilibrium model is not so convincing, though: (17) has
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the unbiological property that g(n)— oo as n — 0. However, as a nonequi-
librium model, the lognormal does indeed have desirable properties. If the
simple exponential-growth equation, dn /dt = An, is made stochastic with
h(n)=1, then the nonequilibrium pdf f(n, t) is equal to (19), with §, = log n,,
+ At +[(0%/2)— w]t, 0, = a*t. Thus, Preston’s model seems meaningful for
pioneer, colonizing communities, whereas Fisher’s model seems more ap-
propriate for mature, equilibrium communities (Dennis and Patil [17]).
Interestingly, the Ito-Stratonovich difference occurs in the form of a
weighted distribution in this nonequilibrium lognormal model. Specifically,

n%fi(n,t)

E[(N, ()]

Several interrelationships between arithmetic means, geometric means,
harmonic means, and modes result: E[N;]= exp{E[log Ngl},
exp{ E[log N;]} =1/E[1/Ns], and 1/E[1/N;]= i, where i 5 is the mode of
the Stratonovich pdf. The semantic differences between the Ito and
Stratonovich approaches for this simple exponential growth model are amus-
ing: most common measures of central tendency for the Ito version equal
other such measures for the Stratonovich version.

fs(n,1) = (20)

BAYESIAN STATISTICS

Bayesian statistical analysis (see Hogg and Craig [27]) has not gained
much favor among ecologists, in contrast to the widespread attention it
receives in the statistics literature. Quantifying and incorporating subjective
beliefs into data analysis is a statistical procedure that practicing scientists
rightly regard with skepticism. While not advocating wholesale use of Bayes-
ian methods, we would like to point out how the gamma population model
might help eliminate some of the subjectivity involved. An example follows.

Consider a problem of estimating the mean population density of a
species. Random plots of unit area are sampled, and the numbers of
organisms in each plot, x,, x,,...,x,, say, are recorded. A common statistical
model would take these values to be a random sample from a Poisson
distribution with parameter n. The statistical method for estimating n most
familiar to ecologists uses the sample mean, 7 = (Xx;)/m, which is the
maximum-likelihood estimate.

A Bayesian approach would have the investigator summarize prior knowl-
edge about the value of n into a probability distribution (the prior distribu-
tion) for n. A convenient prior distribution in Bayesian analysis has
traditionally been the gamma, since its conjugacy with the Poisson distribu-
tion produces estimates that are mathematically easy to handle. Through the
use of the Bayes rule of conditional probability, the distribution of n
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conditional upon the data (the posterior distribution) is obtained. One then
typically picks, as an estimate (or rather, predictor) of n, the average value of
n given the data. This estimate becomes fp=(Xx;/m)m/(m+ o)+
(s/a)a/(m+ a) when the prior distribution is gamma with parameters a
and s. The operational problem with this approach is the subjectivity
involved in using the gamma prior distribution and picking the numerical
values of « and s.

For some studies, it may be reasonable to assume the population is at
steady state. Information from previous population monitoring, for instance,
may support such an assumption. The gamma distribution is then a theoreti-
cal model of the population’s abundance. Under these circumstances, incor-
poration of a gamma prior distribution into current population estimates
seems reasonable rather than subjective. Data on previous abundances of the
population, such as the mean and variance of previous abundances, may be
used to estimate « and s in a prior gamma distribution. The above Bayesian
estimate fip is seen to be a weighted average of the maximum-likelihood
estimate # and the mean, s/«, of the prior distribution. If an apparent
anomalous value of # turned up in a continued monitoring study, the past
equilibrium history of population abundance would carry some weight in the
estimate 71 5. However, most of the weight will be carried by # if the sample
size m is large.

3. RELATIONSHIPS BETWEEN STOCHASTIC AND
DETERMINISTIC MODELS

MODES AND EQUILIBRIA

There is an important relationship between the equilibria of a determinis-
tic system and the modes of the stationary pdf in the stochastic system (Cobb
[11]). The relationship has significant implications for population dynamics.
In Cobb’s [11] terminology, a mode is a local maximum of f(n), an antimode
is a local minimum, and a pofe is a point where f(n)—occ. Modes and
antimodes of (6), denoted 7;, are found by solving for the roots of
dlog f(n)/dn=0:

g(A)—wh(R)[h(A)+rh'(A)]=0. (21)

Whether a mode 7 is greater or less than a corresponding deterministic steady
state 7 [from (2)] will depend on specific properties of the density dependent
noise modulation term, A(#). The fact that (2) may have only one root 7 does
not preclude the existence of several roots to (21). A multimodal distribution
could arise from a deterministic system with a single equilibrium, while a
system with multiple equilibria might produce a unimodal distribution.
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The gamma would approximate the true distribution of population size
only near a single stable equilibrium. However, various deterministic models
receiving wide attention in the ecological literature possess multiple stable
and unstable equilibria (see review by May [40]). Intuitively, one might
expect a stable equilibrium in a deterministic system to influence the location
of the locally most likely population size in the stochastic system. Also, an
unstable equilibrium should determine one of the locally least likely popula-
tion sizes. This is indeed the case when the noise is density independent. In
fact, the effect of density independent noise added to models like (1) is
similar to the effect of harvesting.

NOISE AND HARVESTING

Models of commercial renewable resources frequently assume a popula-
tion growing according to (1) suffers harvesting at a rate en, where ¢ is a
constant harvesting effort (Clark [10]). Thus,

%=ng(n)—en. (22)

An equilibrium is then found as a root of
g(n)—e=0. (23)

A stable harvesting equilibrium from (23) will be less than the stable
equilibrium from the unexploited population (2). Likewise, an unstable
harvesting equilibrium will be greater than the unstable, nonharvesting
equilibrium.

Consider now a stochastic population growing (without harvesting)
according to (4) with A(n) =1. A mode of the stationary pdf for population
size is then, from (21), a root of

g(i)—w=0. (24)

The mode of the stochastic model is identical to the equilibrium of a
deterministic population harvested at a constant effort w, as is clear from
comparing (24) and (23). Thus, a population experiencing density indepen-
dent environmental fluctuations is most likely to be found below its de-
terministic steady state.

DENSITY INDEPENDENCE AND DENSITY DEPENDENCE

These SDE models provide a concise summary of the interactions between
density independent and density dependent population regulation. The fa-
mous controversy over whether density independent or density dependent



200 B. DENNIS AND G. P. PATIL

forces are predominantly responsible for population regulation divided ecolo-
gists for many years (see for instance, Colinveaux [12})). Contemporary
ecological theory has come to rest heavily on the importance of density
dependence (Roughgarden [60], Hutchinson [31], May [39]). Applied ecolo-
gists in resource management, by contrast, have frequently found the field
data to be too scattered for the density dependent models to be useful. For
instance, the recent willingness of fisheries scientists to adopt a density
independent approach to the analysis of recruitment distributions (Henne-
muth et al. [26]) shows there is still life in the controversy.

The SDE (4) with ~(n) =1 represents a quantitative refinement of Horn’s
[29] graphical “resolution” to the issue of density independence versus
density dependence. Displayed in Figure 4 are a logistic growth rate (13) and
a “harvesting” term wn contrasted as functions of ». Their intersection
provides the location of the mode to the stationary gamma pdf. Horn [29]
presented a similar figure, only the linear term wn was a deterministic
removal rate representing deaths from density independent causes, and the
intersection was a deterministic equilibrium. The refinement represented by
Figure 4 is to treat only density dependent forces as deterministic, with the
density independent environmental factors affecting a population stochasti-
cally. In engineering parlance, density dependence is the underlying “signal,”
and density independence is the “noise.” The result puts the most likely

Wn
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F1G. 4. The relationship between density dependent and density independent popula-
tion regulation. The curve rn —(r/k)n* is the growth rate from the underlying determinis-
tic model of density dependent regulation. The intensity of stochastic density independent
forces (environmental fluctuations) is the line wn. Intersection of the curve and line
provides the location of the mode of the gamma distribution of population size.
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population size, 71, below the equilibrium that would pertain in the absence of
stochastic effects. Also, o2, the scaling parameter in the noise, is in some
sense a measure of the intensity or unpredictability of the stochastic forces.
Recalling that w is proportional to 0% shows the mode to be decreasing with
increasing environmental variability. Additionally, the variance of the sta-
tionary gamma pdf, given by Var(N)=s/a?=[0%k? /2r)|[l +(0%/2~
“w)/r], increases with increasing o®. Extreme population sizes, large and
small, would be more likely with increasing environmental fluctuations.

4. WEIGHTED, MULTIMODAL GAMMA DISTRIBUTIONS

A variety of deterministic population models have multiple stable and
unstable equilibria (examples include Volterra [64], Odum and Alee [44],
Philip [52], Takahashi [62], Clark [9], Noy-Meir [43], Peterman [50], May [40],
Huberman [30], Ludwig et al. [37], Berryman [2], [3], Dennis [16]). Such
models frequently take the form (1) modified by an additional term p(n):

B nlg(n)=p(m)]. (25)

Here p(n) is a specific rate describing the effects of predation, harvesting,
Allee effects such as rare matings, or other forces. We adopt the minus sign
in (25) as a convention because p(n) is most frequently some type of removal
rate. In predator-prey studies, np(n) is the “functional response” (Holling
[28]) of the predation rate to the abundance of prey, n. When (25) is altered
into a stochastic model, the function p(n) is manifested as a weight function
in the stationary distribution.

WEIGHTED GAMMA DISTRIBUTIONS
The stochastic version of (25) becomes

%=n[g<n>—p<n>+h<n>z<z>1, (26)

by analogy to the original stochastic model (4) without the removal rate. The
stationary pdf for this model, f,(n) say, is a weighted version of the pdf from
the original model:

_w(n)/(n) <n<o
f(n)= EDw ()] 0 , (27)

where f(#) is given by (6), and

w(n) =expl — = —p(—")—dn}. (28)
=eol -

Evaluating E[w(N)] will usually require numerical integration.
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The most frequent applications assume density independent noise, giving
h(n)=1 and w(n)=exp{—(2/0%)f[p(n)/nldn} in (27). Also, if g(n) in
(26) is the logistic term r —(r/k)n, then f(n) is a gamma distribution [see
(12)}, and f,(n) is a weighted gamma distribution:

_[e/T(s) ] te™ " w(n)
E[w(N)] ’

f,(n) 0<n<oo, (29)

where a = 2r/(ko?), and s = (2r/0%)+1 —(2w/¢?). Depending on the form
of the weighting function w(#n) in (29), the pdf may display unimodal or
multimodal shapes. For such models, modes and antimodes will be roots of

r—ir’z—p(n)—w=0. (30)

A few examples follow. The examples assume the model is in the form
(26), with i(n)=1 and g(n)=r —(r/k)n.

CONSTANT-EFFORT HARVESTING

The Schaefer [61] harvesting model uses p(n) =g, as in (22). The stochas-
tic version has a stationary gamma pdf:
as—yn:—y—le~nn
=, 0<n<co. 31
1 = 5= n<w (31)

Here y = 2¢/0°. The single mode at k(1 —&/r — w/r) is less than the mode
without harvesting (e=0), which in turn is less than the deterministic
equilibrium without harvesting (w =0, e=0). May et al. [41] provide addi-
tional results on this model.

CONVEX REMOVAL RATE

A frequently used predation model takes p(n)=A/(8+ n), a convex
function of n. Then sp(n) is the familiar type-II functional response in
predator-prey theory (Holling {28]). Here A is the upper maximum at which
the predators’ feeding rate saturates, and 8 is the population size: Sp(B) =
A /2. Williams [66] demonstrates how this functional response can arise from
a wide variety of predation mechanisms. Peterman and Steer [51] discuss its
application as a harvest rate. The model also arises in connection with the
growth of sexually reproducing populations. The term np(n) is used to
represent the decline in growth rate due to insufficient mating encounters at
low population densities (Dennis [15,16]).

The deterministic model (25) displays no, one, or two equilibria (nonzero)
depending on parameter values (Dennis [16]). In the case of two equilibria,
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one of them is unstable, representing a lower critical density below which the
population declines to extinction. The upper equilibrium is stable.
The stationary pdf (29) using p(n)=A/(B+ n) is

fp(n)=¢n5_9_‘e““"(ﬁ+n)9, 0<n<oo. (32)

‘Here 6 =2\ /(Bo?), a,s are given in (29), and the normalization constant
can be expressed as ¢y i=¥(s—0,5+1,aB) (s —0)B°, where ¥ is a
degenerate hypergeometric function (Gradshteyn and Ryzhik [25]; also called
a confluent hypergeometric function by Abramowitz and Stegun [1]). A
condition for existence of this pdf is s — 8 > 0. The condition reduces to
r> X /B (Stratonovich) or r> X /B + ¢%/2 (Ito), and if it is not met, the
stationary pdf is degenerate at zero, meaning certain extinction. This ex-
istence condition corresponds to having only one equilibrium in the de-
terministic model (25). The lower unstable equilibrium vanishes when r >
A /B, since r and A /B are the vertical-axis intercepts of g(n) and p(n),
respectively. Only the upper stable equilibrium would remain. In other
words, the pdf (32) exists only if the natural reproductive rate of the
deterministic population is always high enough at lower densities to over-
come negative effects of the removal rate.

Modes and antimodes of (32), however, behave as if there were an
additional harvesting burden on the deterministic population. From (30),
modes and antimodes are roots of

A

—B+ —w=0. (33)

r——n

=t

|~

This is a simple quadratic expression with roots, 7, and 7,, given by
i=[—B+(B*—44C)/?1/(2A4), where A=—r/k, B=r(1-B/k)—w,
and C=8(r— w)—A. The pdf (32) has several shapes depending on the
values of these roots. For small 62, only the root 7, is positive (Figure 5) and
the pdf will have one mode (Figure 6). As 62 increases the root 7; becomes
positive (Figure 5), producing an antimode in the pdf (Figure 6). The
antimode is a stochastic equivalent of a deterministic critical density, being a
point where the population size is unlikely to be found. The two roots merge
when w=r(1+ B/k)—2(Ar/k)'/? (Figure 5). The corresponding pdf has a
“shoulder” (Figure 6). Finally, large values of ¢? make the roots vanish
(Figure 5) and yield a declining monotone pdf with a pole at zero (Figure 6).
In summary, adding these stochastic effects to the deterministic model
substantially alters its dynamical character by amplifying, as it were, the
“removal load.” Population extinction is certain under the stochastic model
for the usual parameter values producing two equilibria in the deterministic
case. Even if the population’s natural reproductive rate compensates for
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F1G. 5. Intersections of the line r —(r/k)n with the curve A /(B + n)+ w provide
locations of modes and antimodes in the stationary distribution (32). (a) Low value of o’
gives only one mode, f5. (b) Intermediate value of o2 results in one antimode, 7, and one
mode, 71,. (¢) As a” increases, mode and antimode merge. (d) No modes or antimodes in the
stationary pdf occur for high o2 values.

PDF

Population Size

F1G. 6. Shapes of the stationary distribution (32) plotted for various o 2 values. (a) Low
o2; one mode. (b) Intermediate 0> one antimode, one mode. (c) Mode and antimode merge
into a shoulder. (d) High o°; pdf decreases monotonically.
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removal in the deterministic case, the removal rate may be expressed in the
stochastic case in the form of the antimode of Figure 6. Periods of population
abundance (mode) will be interspersed with periods of chronic rarity (pole at
zero). As the stochastic factors become more severe (i.e., increasing ¢?),
rarity, and ultimate extinction, would prevail (Figure 6).

Philip [52] proposed a deterministic model of population growth in the
presence of rare matings using the convex removal rate p(n)=Ae”#". The
stationary pdf for the stochastic version (26) is, from (29),

f(n)=ynilememe¥ErlBn g <n<oo, _ (34)

where y = 2A /02, Both the deterministic and the stochastic models behave
quite similarly to the previous models using np(n)=2An /(B + n).

SIGMOID REMOVAL RATE

Ludwig et al. [37] propose a model of the spruce-budworm system incor-
porating the sigmoid-shaped term np(n)=An?/(B% + n?) representing pre-
dation losses. The shape is characteristic of the type-III functional response
(Holling [28]). The deterministic model exhibits one, two, or three equilibria
depending on parameter values. A single stable equilibrium or two stable
equilibria separated by an unstable equilibrium are the most important cases.
From (29), the stationary pdf for the stochastic version is

fp(n)=‘Pns—le—anfﬂarclan(n/ﬁ)’ 0<n<oo. (35)

Here 6 =2\ /(B¢?), and a and s are defined after Equation (29). The
constant ¥ must be found by numerical integration.

Modes and antimodes of f,(n) are roots to Equation (30). In terms of the
parameters in the pdf (35), modes and antimodes are roots to

087

FERYE =0, (36)

(s —1)y—an—

or, rearranged into a cubic polynomial, 4+ An? + Bi + C =0, where 4 =
—(s—=1)/a, B=B[B+(8/a)], C=B*[(s —1)/a]. Defining by

A=(A>—34B+4C)Y +(3B - A7), (37)
the 16th-century discriminant of Cardan, we have the following shapes of

fr(n):

(a) A<0,s>1. The equation (36) has three real roots. If s > 1, then all
three roots must be positive, as no negative values of 7 could satisfy Equation
(36). Then f,(n) would have two modes separated by an antimode.
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(b) A>0, s>1. Equation (36) has only one positive real root, corre-
sponding to a single mode in f,(n).

() A=0,s>1. There are only one or two distinct real roots; f,(n) has
one mode, or a mode and a shoulder.

(d) s <1. No positive real roots exist to Equation (36). The distribution
has a monotone decreasing shape, either with a pole at zero (s <1) or without
a pole at zero (s =1).

Roots to (30) can be visualized by contrasting the line r —(7/k)n with the
curve An /(B* + n?)+ w for varying a? values (Figure 7). These different o
values produce the assorted shapes of the stationary pdf (Figure 8). Other
parameter changes could occur in nature as well. Examples of system
parameter changes might be: (1) changes in the abundance of predators (i.e.,
changes in A and consequent changes in ), or (2) changes in the population’s
food supply (resulting in changes in £ and consequent changes in a). In some
cases a small parameter change might possibly shift A or s from one “shape
region” to another, causing drastic changes in the shape of the stationary pdf.
Parameter changes in the deterministic system, by contrast, may produce
sudden changes in the configuration of the system equilibria. The branch of
mathematics known as catastrophe theory is used for classifying these
changes of equilibria in deterministic systems and is being applied with
increasing frequency to deterministic ecological models. Ludwig et al. [37]
provide an example application of catastrophe theory to their deterministic
spruce-budworm model. '

/‘ )«n/(a2 + n2)+w
| \

o
F] r-(r/k)n
]
« d
£ i
T 2
3 ! ! high
-, : :
O ! !
1 ]
Lo
i ' tow 72
t 1
1 i
! i

K]

[~ T U ——

Population Size

FiG. 7. Intersections of the line r —(r/k)n with the curve An /(B* + n*)+ w provide
locations of modes and antimodes in the stationary distribution (35). (a) Low value of a*
gives only one mode, 7. (b) Intermediate value of o2 gives one antimode, it,, and two
modes, #, and #4. (c) High value of o gives one mode, .
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Population Slze

FiG. 8. Shapes of the stationary distribution (35) plotted for various ¢ values. (a) Low
a?; one mode. (b) Intermediate ¢%; one antimode, two modes. (¢) High ¢7; one mode.

CATASTROPHE THEORY

Cobb [11] shows how the whole framework of catastrophe theory applies
to stochastic equilibrium pdfs with multiple modes. Starting with determinis-
tic models of the form

dn

?1?=81n+82nz+83n3+ <o+ 8.n, (38)

J
and introducing white noise into (38), Cobb obtains multimodal pdfs of the
exponential family:

fo(m) =gt o (39)

Here v, = (28, /0°)—(2w/0?)+1, and y, =28, /[o(i —1)] for i =2,3,....j.
This is a weighted gamma pdf if we write y, =s + 7, and y, = — a+ 75, where
7, T, are real numbers. An example of a population model in the form (38)
was studied by Volterra [64]:

dn _

i 8,n+ 8,7+ 8;n’. (40)

An upper stable equilibrium and a lower critical density are predicted. The
stochastic version of (40) has the stationary pdf

f,(n)= ynnlevtu ) <n<oo, (41)
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where v, = (28,/0%)—(2w/0?)+1, v, =28, /0%, y;=25,/0 This pdf be-
haves quite similarly to the pdf (32).

The pdf (39) in general may have multiple modes and antimodes. These
modes and antimodes may be charted as a surface varying with all the
parameters §,, similar to the equilibrium surface (manifold) of the determinis-
tic model (38). The familiar catastrophe surfaces, such as the fold, cusp, and
butterfly, describe the sudden changes in modality of (39) in response to
parameter changes. Readers are referred to Cobb ([11] and references therein)
for more details.

DATA ANALYSIS

Procuring stationary pdfs for SDE models opens new possibilities for
analyzing data from systems suspected of having multiple equilibria. In the
modeling approach of this paper, the deterministic forces constitute the
underlying signal of the system, while the stochastic forces constitute
the noise. A stationary pdf forms an explicit frequency distribution for the
abundances of an ensemble of populations growing under the same stochastic
conditions, or for the long-run history of the abundance of a single popula-
tion. Data from such situations may be used to estimate the parameters of
the stationary pdfs for any proposed deterministic models. Maximum-likeli-
hood techniques for parameter estimation (see Hogg and Craig [27]) allow
expiicit hypothesis tests for goodness of fit. Furthermore, maximum-likeli-
hood techniques allow use of the likelihood-ratio tests for testing complex
models (e.g., multimodal pdfs) against simple models (e.g., unimodal pdfs)
contained within the complex ones as special cases. Cobb [11] outlines these
procedures for models in the forms (38) and (39). The procedures may of
course be used for other pdfs as well, though extensive computing will often
be required using maximization algorithms such as the Nelder-Mead method
(see Olsson and Nelson [45]).

CONCLUSIONS

A useful way of constructing stochastic models is by adding white noise to
the specific growth rate in deterministic differential-equation models of
population abundance. The noise is a statistical description of the random
fluctuations in growth rate caused by unspecified environmental factors. If
the deterministic model has a stable equilibrium, the approximate stationary
distribution of population abundance for the stochastic version is a gamma
distribution. Thus, the gamma is a general model of a population fluctuating
around a steady state. The gamma model is consistent with the data of
Costantino and Desharnais [13] and approximates quite well the exact pdfs
for various population models popular in the ecological literature.

These findings provide a theoretical basis for certain descriptive uses of
the gamma model in statistical ecology, including uses as: (1) a mixing
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distribution in sampling models, (2) a species abundance distribution, and (3)
a prior distribution in Bayesian statistics.

Some relationships between these deterministic and stochastic models
have important implications for population dynamics. Modes, rather than
means, of the stationary distributions from the stochastic models roughly
correspond to the equilibria from the deterministic models. Also, adding
stochastic forces to a deterministic population model is similar to adding
constant-effort harvesting. These relationships provide a concise graphical
summary of the interactions between density dependent and density indepen-
dent population regulation.

Deterministic population models often contain a removal term describing
the effects on growth rate of predation, harvesting, Allee effects, or other
forces. The stationary distributions for the stochastic versions of such models
are weighted gamma distributions. The deterministic models may possess
multiple stable and unstable equilibria, whereas the corresponding stationary
distributions may display multiple modes and antimodes. Several examples
of deterministic models from the ecological literature display multimodal
shapes in their stochastic versions. The whole framework of catastrophe
theory, used for analyzing deterministic models with multiple steady states,
may be applied to the multimodal stationary distributions. Data analysis
using maximum-likelihood techniques would allow explicit tests of various
hypotheses concerning the models, such as unimodality versus multimodality.

This work was an invited paper at the 1981 Annual Meetings of the
American Statistical Association, session on Dynamics of Exploited Populations.
The authors wish to thank Loren Cobb for his commentary at the meetings, and
Alan Berryman for his review of a draft of the manuscript. The research was
supported in part by a grant from the National Marine Fisheries Service
(#NA-80- FAC-00040).
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